ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:112KB ,
资源ID:12022768      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12022768.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(专升本《高等数学》考试大纲.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

专升本《高等数学》考试大纲.doc

1、四川省普通高等学校“专升本”选拔 《高等数学》考试大纲(理工类) 总要求 考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程以及《线性代数》的行列式、矩阵、向 量、方程组的基本概念与基本理论;掌握上述各部分的基本方法、应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能 力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确、简捷地计算;能综合运用 所学知识分析并解决简单的实际问题、 本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解

2、两个层次;对方法和运算分为“会”、“掌握”和“熟练 掌握”三个层次、 考试用时:120分钟 考试范围及要求 一、函数、极限和连续 (一)函数 1、理解函数的概念,会求函数的定义域、表达式及函数值。会求分段函数的定义域、函数值,并会作出简单的分段函数图像。会建立简单实际问题的函数关系式。 2、理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。 3、了解函数与其反函数之间的关系(定义域、值域、图象),会求单调函数的反函 数。 4、理解和掌握函数的四则运算与复合运算, 熟练掌握复合函数的复合过程。 5、掌握基本初等函数及其简单性质、图象。

3、 6、了解初等函数的概念及其性质。 (二)极限 1、理解极限的概念,会求数列极限及函数在一点处的左极限、右极限和极限,了解数列极限存在性定理以及函数在一点处极限存在的充分必要条件。 2、了解极限的有关性质,掌握极限的四则运算法则(包括数列极限与函数极限)。 3、熟练掌握用两个重要极限求极限的方法。 4、了解无穷小量、无穷大量的概念,掌握无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 (三)连续 1、理解函数在一点连续与间断的概念,会判断简单函数(含分段函数)的连续性,理解函数在一点

4、连续与极限存在的关系 。 2、会求函数的间断点及确定其类型。 3、掌握闭区间上连续函数的性质,会运用零点定理证明方程根的存在性 。 4、了解初等函数在其定义区间上连续,并会利用连续性求极限。 二、一元函数微分学 (一)导数与微分 1、理解导数的概念,了解导数的几何意义以及函数可导性与连续性之间的关系,会用定义判断函数的可导性 。 2、会求曲线上一点处的切线方程与法线方程。 3、熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法,会求反函数的导数。 4、掌握隐函数以及由参数方程所确定的函数的求导方法,会使用对数求导法,会求分段函数的导数。 5、了解高阶

5、导数的概念,会求初等函数的高阶导数。 6、理解函数的微分概念及微分的几何意义,掌握微分运算 法 则及一阶微分形式的不变性,了解可微与可导的关系,会求函数的微分。 (二)中值定理及导数的应用 1、了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。会用罗尔中值定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。 2 、熟 练掌 握用洛必达法则求“”、“”、“”、“”、“”、“”和“”型等未定式的极限。 3、会利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。 4、了解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并

6、且会解简单的应用问题。 5、会判定曲线的凹凸性,会求曲线的拐点。 6、会求曲线的水平渐近线与垂直渐近线。 三、一元函数积分学 (一)不定积分 1、理解原函数与不定积分的概念,掌握不定积分的性质,了解原函数存在定理 。 2、熟练掌握基本的积分公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。 4、掌握不定积分的分部积分法。 5、会求简单有理函数及简单无理函数的不定积分。 (二)定积分 1、理解定积分的概念与几何意义,了解函数可积的条件。 2、掌握定积分的基本性质。 3、了解变上限的定积分是变上限的函数,掌握

7、对变上限定积分求导数的方法。 4、熟练掌握牛顿—莱布尼茨公式。 5、掌握定积分的换元积分法与分部积分法。并会证明一些简单的积分恒等式。 6、理解无穷区间广义积分的概念,掌握其计算方法。 7、掌握直角坐标系下用定积分计算平面图形的面积会求平面图形绕坐标轴旋转所生成的旋转体体积。 四、向量代数与空间解析几何 (一)向量代数 1、理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影 。 2、掌握向量的线性运算、向量的数量积以及两向量的向量积的计算方法。 3、了解两向量平行、垂直的条件。 (二)平面与直线 1、会求平面的点法式方程、

8、一般式方程。会判定两平面的垂直、平行 。 2、会求点到平面的距离。 3、了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。 4、会判定直线与平面间的关系(垂直、平行、直线在平面上)。 (三)简单的二次曲面 了解球面、母线平行于坐标轴的柱面、圆锥面、椭球面、抛物面、和双曲面的方程及其图形。 五、多元函数微积分学 (一)多元函数微分学 1、了解多元函数的概念、二元函数的几何意义及二元函数的极限与连续概念(对计算不作要求)。会求二元函数的定义域。 2、理解偏导数概念,了解全微分概念及其全微分存在的必要条件与充分条件。 3、掌握二元函数的一

9、二阶偏导数计算方法。 4、掌握复合函数一阶偏导数的求法(含抽象函数)。 5、会求二元函数的全微分(不含抽象函数)。 6、掌握由方程所确定的隐函 数的一阶偏导数的计算方法。 7、会求空间曲线的切线和法平面方程,会求空间曲面的切平面和法线方程。 8、会求二元函数的无条件极值。会应用拉格朗日乘数法求解一些最大值最小值问题。 (二)二重积分 1、理解二重积分的概念及其性质。 2、掌握二重积分在直角坐标系及极坐标系下的计算方法 。 3、会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积)。 (三)曲线积分 1、了解对坐标的曲线积分的概念及性质。 2、

10、掌握对坐标的曲线积分的计算。 3、掌握格林(Green)公式。掌握曲线积分与路径无关的条件,并会应用于曲线积分的计算中。 六、无穷级数 (一)数项级数 1、理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。 2、掌握正项级数的比较判别法、比值判别法和根值判别法。 3、掌握几何级数、调和级数与级数的敛散性。 4、会使用莱布尼茨判别法。 5、理解级数绝对收敛与条件收敛的概念,会判定任意项级数绝对收敛与条件收敛的方法。 (二)幂级数 1、了解幂级数的概念。 2、掌握幂级数在其收敛区间内的逐项求导与逐项积分的性质与方法。 3、掌握求幂级数的收敛半径、收敛

11、区间(不要求讨论端点)的方法。 4、会运用,,,,的麦克劳林展开式,将一些简单的初等函数展开为或的幂级数。 七、常微分方程 (一)一阶微分方程 1、理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。 2、掌握可分离变量方程的解法。 3、掌握一阶线性微分方程的解法。 (二)二阶线性微分方程 1、了解二阶线性微分方程解的结构。 2、掌握二阶常系数齐次线性微分方程的解法。 3、了解二阶常系数非齐次线性微分方程的解法(自由项限定为其中为的次多项式,为实常数)。 八、 线性代数 (一)行列式 1、了解行列式的概念,掌握行列式的性质。 2、会应用行列式

12、的性质和行列式按行(列)展开定理计算行列式。 (二)矩阵 1、理解矩阵的概念。了解单位矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。 2、掌握矩阵的线性运算、乘法、转置、方阵乘积的行列式及它们的运算规律。 3、理解逆矩阵的概念,掌握矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆矩阵。 4、掌握矩阵的初等变换,了解矩阵秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。 (三)向量 1、了解n维向量的概念,向量的线性组合与线性表示。 2、理解向量组线性相关与线性无关的定义,掌握判别向量组线性相关性的方法。 3、了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组和秩。 (四)线性方程组 1、掌握克莱姆法则。 2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。 3、了解齐次线性方程组的基础解系、通解的概念。 4、了解非齐次线性方程组解的结构及通解的概念。 5、掌握用行初等变换求线性方程组通解的方法 。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服