ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:96KB ,
资源ID:12021642      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12021642.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(rbf核神经网络程序matlab程序.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

rbf核神经网络程序matlab程序.doc

1、include "RadialBasisNetwork.h" #include "Exception.h" #include "Matrix.h" #include "File.h" using namespace std; namespace annie { /** Creates a Radial basis function network. All the outputs will have a bias. * @param inputs Number of inputs taken in by the network * @param cent

2、ers Number of centers the network has. Each center will be * an inputs-dimensional point * @param outputs The number of outputs given by the neuron. All of them will have * a bias */ RadialBasisNetwork::RadialBasisNetwork(int inputs, int centers, int outputs, real (*CenterArray)

3、[1024]) : Network(inputs,outputs) { int i,j; //extern real CenterArray[WORDNUM][inputs]; centroid = new real[inputs]; /// Layer of input. Each member is an InputNeuron //InputLayer *_inputLayer; _inputLayer = new InputLayer(0,inputs); /** Number of centers in the network.

4、 If you plan to extend this class, then the onus of keeping this value * consistent lies on you */ _nCenters = centers; /// Layer of centers, each member is a CenterNEuron _centerLayer = new Layer(1); for (i=0;i<_nCenters;i++) { for(j=0;j

5、enterArray[i][j]; } //CenterNeuron *c = new CenterNeuron(Layer::MAX_LAYER_SIZE*1+i,inputs); CenterNeuron *c = new CenterNeuron(Layer::MAX_LAYER_SIZE*1+i,inputs, centroid); for (j=0;jconnect(&_inputLayer->getNeuron(j)); } _centerLayer->addNeuron(c);

6、} /// Layer of output, each member if a SimpleNeuron _outputLayer = new Layer(2); for (i=0;isetActivationFunction(identity,didentity); for (j=0;jconnect(&_centerLayer->ge

7、tNeuron(j)); _outputLayer->addNeuron(n); } } /// Copy constructor, NOT YET IMPLEMENTED RadialBasisNetwork::RadialBasisNetwork(RadialBasisNetwork &src) : Network(src) { int i,j,lbl; int inputs = src._inputLayer->getSize(); int centers = src._centerLayer->getSize(); int outputs =

8、src._outputLayer->getSize(); _inputLayer = new InputLayer(src._inputLayer->getLabel(),src._inputLayer->getSize()); _nCenters = src._nCenters; lbl = src._centerLayer->getLabel(); _centerLayer = new Layer(lbl); for (i=0;i

9、YER_SIZE*lbl+i,inputs); CenterNeuron &cSrc = (CenterNeuron&)src._centerLayer->getNeuron(i); c->setCenter(cSrc.getCenter()); for (j=0;jconnect(&_inputLayer->getNeuron(j)); _centerLayer->addNeuron(c); } lbl = src._outputLayer->getLabel(); _outputLayer = new La

10、yer(lbl); for (i=0;igetNeuron(i); n->setBias(nSrc.getBias()); n->setActivationFunction(identity,didentity); for (j=0;j

11、 Exception("RadialBasisNetwork::RadialBasisNetwork() - Copy constructor not fully implemented"); } _outputLayer->addNeuron(n); } } /** Loads a network from a text file * @see save * @param filename Name of the file from which to load network structure * @throws Exception On a

12、ny error */ RadialBasisNetwork::RadialBasisNetwork(const char *filename) : Network(0,0) { File file; int i,j; try { file.open(filename); } catch (Exception &e) { string error(getClassName()); error = error + "::" + getClassName() + "() - " + e.what(); throw Exception(err

13、or); } string s; s=file.readWord(); if (pare(getClassName())!=0) { string error(getClassName()); error = error + "::" + getClassName() + "() - File supplied is not about this type of network."; throw Exception(error); } int maxLayerSize = Layer::MAX_LAYER_SIZE; while (!fil

14、e.eof()) { s=file.readWord(); if (!pare("INPUTS")) { _nInputs=file.readInt(); _inputLayer = new InputLayer(0,_nInputs); } else if (!pare("OUTPUTS")) { _nOutputs=file.readInt(); _outputLayer = new Layer(2); for (i=0;i

15、euron *n = new SimpleNeuron(maxLayerSize*2+i,true); n->setActivationFunction(identity,didentity); _outputLayer->addNeuron(n); } } else if (!pare("CENTERS")) { _nCenters = file.readInt(); _centerLayer = new Layer(1); for (i=0;i

16、rNeuron *n = new CenterNeuron(maxLayerSize*1+i,getInputCount()); _centerLayer->addNeuron(n); } } else if (!pare("CENTER_POINTS")) { for (i=0;igetNeuron(i); VECTOR center; for (j=0;j

17、putCount();j++) center.push_back(file.readDouble()); n.setCenter(center); } } else if (!pare("MAX_LAYER_SIZE")) maxLayerSize=file.readInt(); else if (!pare("Biases")) { for (i=0;i

18、SimpleNeuron&)_outputLayer->getNeuron(i); if (file.readChar()=='t') o.setBias(file.readDouble()); else o.removeBias(); } } else if (!pare("BEGIN_META_DATA")) { static const basic_string ::size_type npos = (basic_string ::size_type)-1; string en

19、d("END_META_DATA"); string metaData; s = file.readLine(); while (s.find(end,0)==npos) { metaData = metaData + s + "\n"; s = file.readLine(); } if (metaData.length()>0) metaData.erase(metaData.length()-1); setMetaData(metaData); } else if (!pare("Conne

20、ctions")) { //Connect inputs to centers for (i=0;igetNeuron(i); for (j=0;jgetNeuron(j)); } //Connect centers to outputs for (i=0;i

21、OutputCount();i++) { SimpleNeuron &o = (SimpleNeuron&)_outputLayer->getNeuron(i); for (j=0;jgetNeuron(j),file.readDouble()); } } else cerr<

22、ring.\n"; } // while (!file.eof()) file.close(); } RadialBasisNetwork::~RadialBasisNetwork() { delete _inputLayer; delete _centerLayer; delete _outputLayer; delete []centroid; } /** Returns the point corresponding to the ith center. * @param i The center whose point is wante

23、d * @return The getInputCount() dimensional point corresponding to the * ith center */ VECTOR RadialBasisNetwork::getCenter(int i) { VECTOR answer; try { answer = ((CenterNeuron&)_centerLayer->getNeuron(i)).getCenter(); } catch (Exception &e) { string error(getClassNa

24、me()); error = error + "::getCenter() - " + e.what(); throw Exception(error); } return answer; } //CenterNeuron& //RadialBasisNetwork::getCenterNeuron(int i) //{ // try // { // return (CenterNeuron&)(_centerLayer->getNeuron(i)); // } // catch (Exception &e) // { // string er

25、ror(getClassName()); // error = error + "::getCenterNeuron() - " + e.what(); // throw Exception(error); // } //} /** Returns the output of the network for the given input. * @param input A vector of getDimension() reals * @return The corresponding output of the network */ VECTOR

26、RadialBasisNetwork::getOutput(VECTOR &input) { try { _inputLayer->setInput(input); return _outputLayer->getOutput(); } catch(Exception e) { string error(getClassName()); error = error + "::getOutput() - "+e.what(); throw Exception(error); } } /** Sets the ith center poi

27、nt to the given point. * @param i The center that is to be changed * @param center The getInputCount() dimensional point */ void RadialBasisNetwork::setCenter(int i, VECTOR ¢er) { try { CenterNeuron &c = (CenterNeuron&)_centerLayer->getNeuron(i); c.setCenter(center); }

28、 catch (Exception &e) { string error(getClassName()); error = error + "::setCenter() - " + e.what(); throw Exception(e); } } /** Sets the ith center point to the given point. * @param i The center that is to be changed * @param center The getInputCount() dimensional point */

29、 void RadialBasisNetwork::setCenter(int i, real *center) { try { CenterNeuron &c = (CenterNeuron&)_centerLayer->getNeuron(i); c.setCenter(center); } catch (Exception &e) { string error(getClassName()); error = error + "::setCenter() - " + e.what(); throw Exception(e); }

30、 } /** Sets the weight between the given center and output * @param center Index of the center (0<=center

31、ception if any of the parameters given is invalid */ void RadialBasisNetwork::setWeight(int center, int output, real weight) { try { CenterNeuron &c = (CenterNeuron&)_centerLayer->getNeuron(center); SimpleNeuron &o = (SimpleNeuron&)_outputLayer->getNeuron(output); o.connect(&c,weigh

32、t); } catch (Exception &e) { string error(getClassName()); error = error + "::setWeight() - " + e.what(); throw Exception(error); } } /** Returns the weight of the link between the given center and output * @param center Index of the center (0<=center

33、 @param output Index of the output (0<=outputgetNeuron(output); CenterNeuron &c =

34、CenterNeuron&)_centerLayer->getNeuron(center); return o.getWeight(&c); } catch (Exception &e) { string error(getClassName()); error = error + "::getWeight() - " + e.what(); throw Exception(error); } } /** Sets the bias of the ith output. * @param i The index of the output

35、0<=igetNeuron(i)); n.setBias(bi

36、as); } catch (Exception &e) { string error(getClassName()); error = error + "::setBias() - " + e.what(); throw Exception(e); } } /** Returns the bias of the ith output * @param i The index of the output (0<=i

37、is no bias, it returns 0.0 */ real RadialBasisNetwork::getBias(int i) { try { SimpleNeuron &n = (SimpleNeuron&)(_outputLayer->getNeuron(i)); return n.getBias(); } catch (Exception &e) { string error(getClassName()); error = error + "::setBias() - " + e.what(); throw Exce

38、ption(e); } } /** Wrapper function to allow getOutput() to work for an array * of real as input as well. * Does exactly the same thing as Network::getOutput(real*). */ VECTOR RadialBasisNetwork::getOutput(real *input) { return Network::getOutput(input); } const char * RadialB

39、asisNetwork::getClassName() { return "RadialBasisNetwork"; } /// The number of centers in the network int RadialBasisNetwork::getCenterCount() { return _nCenters; } /** Sets the activation function of the center neurons. * (The activation function is gaussian by default) * @param f

40、 The activation function to be used. * @param df The derivation of the activation function, used in gradient descent training */ void RadialBasisNetwork::setCenterActivationFunction(ActivationFunction1 f) //RadialBasisNetwork::setCenterActivationFunction(ActivationFunction f,ActivationFuncti

41、on df) { int i; for (i=0;igetNeuron(i); //c.setActivationFunction(f,df); c.setActivationFunction(f); } } /** Prevents the ith output from having any bias. * @param i The index of the output (0<=i

42、putCount()). * @throws Exception if the index given is invalid */ void RadialBasisNetwork::removeBias(int i) { try { SimpleNeuron &o = (SimpleNeuron&)_outputLayer->getNeuron(i); o.removeBias(); } catch (Exception &e) { string error(getClassName()); error = error + "::re

43、moveBias() - " + e.what(); throw Exception(error); } } /** Trains the weights of the network, centers are kept fixed. * @param T The TrainingSet from which input/desired-output pairs will be obtained */ void RadialBasisNetwork::trainWeights(TrainingSet &T) { if (T.getInputSize() !

44、 getInputCount())//getInputCount()继承于Network { string error(getClassName()); error = error + "::trainWeights() - Invalid TrainingSet provided."; throw Exception(error); } int output; int i,j; int p = T.getSize(); //number of training patters int h = getCenterCount(); //numbe

45、r of centers VECTOR in,y; //do for each output for (output=0; outputgetNeuron(output); //为何要强制类型转换? if (hasBia

46、s = outNrn.hasBias()) effectiveH++; //setup matrices Matrix *Y = new Matrix(p, 1);//存放p个模式下输出层各个节点的输出值 Matrix *W = NULL;//存放权值 Matrix *V = new Matrix(p, effectiveH);//存放p个模式各自隐节点输出值 Matrix *VT = NULL; if (p!=effectiveH) VT = new Matrix(effectiveH ,p); extern int Hi

47、dden_num; for (i=0;ielementAt(i,j) = _centerLayer->getNeuron(j).getOutput();//为第i,j个元素赋值 if (VT) VT->elementAt(j,i) = V->elementAt(i,j); } if (hasBias) {

48、 V->elementAt(i,j) = 1.0; if (VT) VT->elementAt(j,i) = 1.0; } Y->elementAt(i,0) = y[output]; } // for i=[0..p) if (VT) { Matrix *VTVinv, *VTY; try { Matrix *VTV; VTV = VT->multiply(V); VTVinv = VTV->inverse(); delete VTV; } catc

49、h (Exception &e) { string error(getClassName()); error = error + "::trainWeights() - " + e.what(); throw Exception(error); } VTY = VT->multiply(Y); W = VTVinv->multiply(VTY); delete VTVinv; delete VTY; } // if VT else { Matrix *Vinv; try { Vinv = V->inverse(); } catch (Exception &e) { string error(getClassName()); error = error + "::trainWeights() - " + e.what(); throw Exception(error); } W = Vinv->multiply(Y); delete Vinv; } //set the

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服