ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:86.41KB ,
资源ID:11980623      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11980623.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(传统文化与教育教学-勾股定理教案设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

传统文化与教育教学-勾股定理教案设计.doc

1、传统文化与教育教学 ——《勾股定理》教学案例 【教学设想】 传统文化博大精深,底蕴深厚其中勾股定理是中国几何的根源。中华数学的精髓,例如开方术、方程术、等许多技艺的诞生与发展,寻根探源,都与勾股定理有着密切关系。而且许多测量法是由勾股定理推演而来的。其次从中国勾股定理的诞生与发展来看,中国古代数学文化传统明显有重视应用、注重理论联系实际、数形结合以算为主、善于把问题分门别类建立一套套算法体系的。所以勾股定理是传统文化的体现。下面我从教学目标,重点、难点,教学活动做了一下设想。从文化传统习惯入手,使用现代教育手段来继承和发扬传统文化,挖掘传统文化内涵,实现数学教育现代化。 知识与技能:

2、 1、了解勾股定理的传统文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。 2、理解勾股定理的内容及数学符号的表示。 3、能灵活运用定理解决相关的计算问题。 过程与方法: 1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。 情感与态度 1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久传统文化的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,锻炼克服困难的勇气,培养合作意识和探索精神。 教学重、难点 重点:探索和

3、证明勾股定理 难点:用拼图方法证明勾股定理 【教学活动】 (一)创设情境导入新课 教师出示PPT让学生观察24届国际数学家大会的会徽,并出示自制教具(赵爽弦图),观察它们的联系,提出问题,数学家大会为什么用它做会徽呢?它有什么特殊的含义吗? [设计意图]这样的引入可唤起学生的好奇心和求知欲,激发学生对勾股定理的兴趣,从而较自然的引入课题。 (二)、新知探究 教师出示PPT,--毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。 (1)同学们,请你也来观察下图中的地面,看看能发现些什么?

4、 (2)你能找出图中正方形A、B、C面积之间的关系吗? (3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系? 通过讲述传统文化故事激发学生学习的兴趣,使学生进入学习的最佳状态。 “问题是思维的起点”,通过层层设问,引导学生发现新知。 深入探究交流归纳 (1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢? 如上图每个小方格的面积均为1,以格点为顶点,有一个直角边分别是2、3的直角三角形。仿照上一活动,我们以这个直角三角形的三边为边长向外作正方形。 (2)想一想,怎样利用小方格计算

5、正方形A、B、C面积? 【设计意图】渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。 拼图验证加深理解 猜想:直角三角形两直角边的平方和等于斜边的平方。 (多媒体动画演示验证) (1)让学生利用学具进行拼图 (2)PPT课件展示拼图过程及证明过程,理解数学的严密性。 【设计意图】通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。 利用分组讨论,加强合作意识。 1、经历所拼图形与多媒体展示图形的

6、联系与区别。 2、加强数学严密教育。从而更好地理解代数与图形相结合 三、应用新知解决问题 分基础题,情境题,探索题. 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华. 基础题: 直角三角形的一直角边长为6,斜边为10,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗? 设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维. 情境题:小红的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的

7、想法吗? 设计意图:增加学生的生活常识,也体现了数学来源于生活,并服务于生活。 探索题: 做一个长,宽,高分别为100厘米,80厘米,60厘米的木箱,一根长为150厘米的木棒能否放入,为什么?试用今天学过的知识说明。 【设计意图】:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力. 。 课堂小结 1、本节课我们探究了那些问题? 2、本节课你收获了什么? 3、学了本节课后你有什么感想? 学生通过对学习过程的小结,领会其中的数学思想方法,体会传统文化在数学中应用。 布置作业 1.必做题:课后习题 第1, 2,3题。

8、 2课本 “阅读与思考”了解勾股定理的多种证法。根据自己的情况选择完成。 [设计意图]针对学生认知的差异设计了有层次的作业题,既使学生巩固知识,形成技能,又使学有余力的学生获得最佳发展。 [教学反思] 本节课我本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。引导学生通过计算发现勾股定理。测量和计算是我们民族文化传统的特长,是古人发现问题、解决问题常用的思路,也是我们学生很熟悉的学习方法。从几个学生构造的特殊例子出发,利用测量工具进行估算,寻找规律,提出猜想,符合我们的文化传

9、统习惯,容易发挥学生的主体积极性。 参评 传统文化与教育教学 ——《勾股定理》教学案例 设计人: 陈作红 联系电话: 13582219781 邮编: 073000 电子邮箱: 94788841@ 工作单位:定州市号头庄乡回民初级中学 作者简介;陈作红 2004年毕业于保定师范专科学校,2004-2010在私立学校任教, 2011年在定州市号头庄回民初级中学任教,2012年论文,《 》曾获市级二等奖,2014年优质课 《 》获市级二等奖, 2015 年说课《全等三角形的判定》获市级一等奖 2016年教学案例《全等三角形的判定》获市级一等奖

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服