ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:309.51KB ,
资源ID:1194776      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1194776.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学新课--三角函数--教案-(6).doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学新课--三角函数--教案-(6).doc

1、课 题:4.3 任意角的三角函数(一)教学目的:1.理解并掌握任意角三角函数的定义.2.理解三角函数是以实数为自变量的函数.3.掌握正弦、余弦、正切函数的定义域.教学重点:任意角三角函数的定义.教学难点:正弦、余弦、正切函数的定义域.授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析: 通过三角函数定义的变化:从锐角三角函数到任意角三角函数,由边的比变为坐标与距离、坐标与坐标、距离与坐标的比,使学生在理解掌握定义的基础上,加深特殊与一般关系的理解.通过对定义的剖析,使学生对正弦、余弦、正切函数的定义域有比较深刻的认识,达到突破难点之目的. 使学生通过任意角三角函数的定义,认识锐

2、角三角函数是任意角三角函数的一种特例,加深特殊与一般关系的理解. 教学过程:一、复习引入:1.在初中我们学习了锐角三角函数,它是以锐角为自变量,边的比值为函数值的三角函数: 2.前面我们对角的概念进行了扩充,并学习了弧度制,知道角的集合与实数集是一一对应的,在这个基础上,今天我们来研究任意角的三角函数.二、讲解新课: 对于锐角三角函数,我们是在直角三角形中定义的,今天,对于任意角的三角函数,我们利用平面直角坐标系来进行研究.1.设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)则P与原点的距离2比值叫做的正弦 记作: 比值叫做的余弦 记作: 比值叫做的正切 记作: 比值叫做的余切 记

3、作: 比值叫做的正割 记作: 比值叫做的余割 记作: 根据相似三角形的知识,对于终边不在坐标轴上确定的角,上述六个比值都不会随P点在的终边上的位置的改变而改变.当角的终边在纵轴上时,即时,终边上任意一点P的横坐标x都为0,所以tan、sec无意义;当角的终边在横轴上时,即(Z)时,终边上任意一点P的纵坐标都为0,所以cot、csc无意义,除此之外,对于确定的角,上面的六个比值都是惟一确定的实数,这就是说,正弦、余弦、正切、余切、正割、余割都是以角为自变量,以比值为函数值的函数.以上六种函数,统称为三角函数.3.突出探究的几个问题: 角是“任意角”,当b=2kp+a(kZ)时,b与a的同名三角函

4、数值应该是相等的,即凡是终边相同的角的三角函数值相等实际上,如果终边在坐标轴上,上述定义同样适用三角函数是以“比值”为函数值的函数而x,y的正负是随象限的变化而不同,故三角函数的符号应由象限确定.定义域:对于正弦函数,因为0,所以恒有意义,即取任意实数,恒有意义,也就是说sin恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域;对于正切函数,因为x0时,无意义,即tan无意义,又当且仅当角的终边落在纵轴上时,才有x0,所以当的终边不在纵轴上时,恒有意义,即tan恒有意义,所以正切函数的定义域是.从而有 4.注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都

5、与x轴的非负半轴重合.(2)OP是角的终边,至于是转了几圈,按什么方向旋转的不清楚,也只有这样,才能说明角是任意的.(3)sin是个整体符号,不能认为是“sin”与“”的积.其余五个符号也是这样.(4)定义中只说怎样的比值叫做的什么函数,并没有说的终边在什么位置(终边在坐标轴上的除外),即函数的定义与的终边位置无关.(5)比值只与角的大小有关.(6)任意角的三角函数的定义与锐角三角函数的定义的联系与区别:任意角的三角函数就包含锐角三角函数,实质上锐角三角函数的定义与任意角的三角函数的定义是一致的,锐角三角函数是任意角三角函数的一种特例. 所不同的是,锐角三角函数是以边的比来定义的,任意角的三角

6、函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的. 即正弦函数值是纵坐标比距离,余弦函数值是横坐标比距离, 正切函数值是纵坐标比横坐标,余切函数值是横坐标比纵坐标,正割函数值是距离比横坐标,余割函数值是距离比纵坐标.(7)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆.三、讲解范例:例1 已知角的终边经过点P(2,3)(如图),求的六个三角函数值.解:x2,3于是 例2求下列各角的六个三角函数值.(1)0 (2) (3) (4) 解:(1)因为当0时,x

7、,0,所以sin0=0 cos0=1 tan0=0 cot0不存在sec0=1 csc0不存在(2)因为当时,x,0,所以sin0 cos1 tan0 cot不存在sec1 csc不存在(3)因为当时,x0,所以 不存在 不存在 (4)当a=时 ,所以 sin=1 cos=0 tan不存在 cot=0 sec不存在 csc=1例3填表:a030456090120135150180270360弧度例4 已知角a的终边经过P(4,-3),求2sina+cosa的值已知角a的终边经过P(4a,-3a),(a0)求2sina+cosa的值 解:由定义 : sina=- cosa= 2sina+cosa

8、=-若 则sina=- cosa= 2sina+cosa=-若 则sina= cosa=- 2sina+cosa=例5 求函数的值域解: 定义域:cosx0 x的终边不在x轴上 又tanx0 x的终边不在y轴上当x是第象限角时, cosx=|cosx| tanx=|tanx| y=2当x是第象限角时,|cosx|=-cosx |tanx|=-tanx y=-2当x是第象限角时, |cosx|=-cosx |tanx|=tanx y=0当x是第象限角时, |cosx|=cosx |tanx|=-tanx y=0四、课堂练习:1.若点P(3,)是角终边上一点,且,则的值是 .答案:2.角的终边上一

9、个点P的坐标为(5a,-12a)(a0),求sin+2cos的值. 解:依题意得:x=5a,y=-12a, (1)当a0时,角是第四象限角,则,sin+2cos=-; (2)当a0时,角是第二象限角,则.cos+2cos=.五、小结 本节课我们给出了任意角三角函数的定义,并且讨论了正弦、余弦、正切函数的定义域,任意角的三角函数实质上是锐角三角函数的扩展,是将锐角三角函数中边的比变为坐标与距离、坐标与坐标、距离与坐标的比,记忆方法可用锐角三角函数类比记忆,至于三角函数的定义域可由三角函数的定义分析得到.六、课后作业:课本 P习题已知角的终边上一点P的坐标是(x,2)(x0),且,求sin和tan的值.分析:,又,即x3x由于x0,3 x249 x25,x.当x时,P点的坐标是(,2).当x时,P点的坐标是(,2).答案:当x=时,当x=时,七.课后记:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服