ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:510.01KB ,
资源ID:1194386      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1194386.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初中数学规律探究题的解题方法.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学规律探究题的解题方法.doc

1、初中数学规律探究题的解法指导广南县篆角乡初级中学 郭应龙新课标中明确要求:用代数式表示数量关系及所反映的规律,发展学生的抽象思维能力。根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。在历年的中考或学业水平考试中屡见不鲜,频繁考查,考生大都感到困难重重,无从下手,导致丢分。解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。笔者认为:只要善于观察,细心研究,知难而进,就会走出“山穷水尽疑无路”的困惑,收获“柳暗花明又一村”的喜悦。一、数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学

2、生的分析、归纳、抽象、概括能力。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.一般地,常用字母n表示正整数,从1开始。 2.在数据中,分清奇偶,记住常用表达式。 正整数n-1,n,n+1 奇数2n-3,2n-1,2n+1,2n+3 偶数2n-2,2n,2n+2 3.熟记常见的规律 1、4、9、16. n2 1、3、6、10 1、3、7、152n -1 1+2+3+4+n= 1+3+5+(2n-1)= n2 2+4+

3、6+2n=n(n+1) 12+22+32.+n2=n(n+1)(2n+1) 13+23+33.+n3=n2(n+1) 数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:1=1- 2=2- 3=3- 4=4-猜想第几个等式为 (用含n的式子表示)分析:将等式竖排:1=1- 观察相应位置上变化的数字与序列号2=2- 的对应关系(注意分清正整数的奇偶)3=3- 易观察出结果为:4=4- n=n-例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729,那么32009的个位数字是 。分析:这类问题,主要是通过观察末位

4、数字,找出其循环节共几位,然后用指数除以循环节的位数,结果余几,就和第几个数的末位数字相同,易得出本题结果为:32.函数法例3.将一正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成更小的正三角形,如此继续下去,结果如下表:所剪次数1234n正三角形个数471013an则an= (用含n的代数式表示)分析:对结果数据做求差处理(相邻两数求差,大数减小数)正三角形个数:4、7、10、13 第一次求差结果相等,用一次函数y=kx+b第一次求差 : 3 3 3 代入(1、4)(2、7)解之得:y=3x+1an=3n+1例4.有一组数:1、2、5、10、17、26请观察这组数的构成规

5、律,用你发现的规律确定第8个数为 。分析:对这组数据做求差处理: 原数 1 2 5 10 17 26 第一次求差:1 3 5 7 9 第二次求差:2 2 2 2第二次求差结果相等,同二次函数y=ax2+bx+c 代入(1、1)(2、2)(3、5)解之得y= x2-2x+2=(x-1)2+1 当=8时,y=50尝试练习:1.观察下列等式:13=12+21;24=22+22;35=32+23请将你猜想到的规律用含自然数n(n1)的代数式表示出来: 。2.观察下列各式:2=+2;3=+3;4=+4;5=+5设n为正整数,用关于n的等式表示这个规律为 。3.观察下列各式:=2;=3;=4请你将猜想到的

6、规律用含正整数n(n1)的代数式表示出来为 。4.已知:2+=22;3+=32;4+=42;5+=52,若10+=102符合前面式子的规律,则a+b= 。5.已知下列等式:13=12;13+23=32;13+23+33=62;13+23+33+43=102由此规律可推 出第n等式: 。二、图形规律探究由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻,并且还可以由一个通用的代数式来表示。这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律,再用函数法、观察法解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题。拆图

7、法例5如图,由若干火柴棒摆成的正方形,第图用了4根火柴,第图用了7根火柴棒,第图用了10根火柴棒,依次类推,第图用 根火柴棒,摆第n个图时,要用 根火柴棒。(1)(2)(3) 分析:本例 可拆为 即1+3=4(根)第拆为 即1+32=7(根);第图可拆为 即1+33=10(根)由此可知,第图为1+310=31(根),第n个图为:(3n+1)根。例6按如下规律摆放三角形:则第堆三角形的个数为 ;第(n)堆三角形的个数为 。 分析:本例中需要进行比较的因素较多,于是把图拆为横向和纵向两部分,就横向而言,把三角形个数抽出来,就是3,5,7这是奇数从小到大的排列,其表达式为:2n+1;就纵向而言,发现

8、三角形个数依次增加一个:第堆有2个,第堆有3个,第堆有4个,所以第(n)堆的个数就为(n+1)个。所以第n堆三角形的总个数为:(n+1)+(2n+1)即(3n+2)个。尝试练习:1.如图7,图7,图7,图7,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是_,第个“广”字中的棋子个数是_2观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 n=1n=2n=33图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形当边长为n根火柴棍时,设摆出的正方形所用的火柴棍的根数为,则 (用n的代数式表示)(1)(2)(3)4用同

9、样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 _块,第个图形中需要黑色瓷砖_块(用含的代数式表示)5如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第个图形需要黑色棋子的个数是 通过对此专题的复习和指导,我想你会有所感悟,有所收获,有所进步.别忘记课后注意巩固训练,展示你的能力,体验成功的快乐!三、课外拓展:1.探索规律:31=3,32=9,33=27,34=81,35=243,36=729那么32008的个位数字是 。2.观察下列等式:71=7,72=49,73=343,74=2041由此可判断7100的个位数字是 。3.瑞士

10、中学教师巴尔末成功地从光谱数据,中得到巴尔末公式,从而打开了光谱奥妙的大门,按此规律第七个数据是 。4.已知a1=+=,a2=+=,a3=+=按此规律,则a99= 。5.已知=1-,=-,=-,则+= ;用相同思路探究:+= 。6如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n幅图中共有 个第1幅第2幅第3幅第n幅图57如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,按照这样的规律排列下去,则第9个图形由_个圆组成8将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,依次规律,第6个图形有 个小圆第1个图形第2个图形第3个图形第4个图形第1次 第2次 第3次 第4次 9用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是_cm(用含n 的代数式表示)。图1010.如图10,已知RtABC中,AC=3,BC= 4,过直角顶点C作CA1AB,垂足为A1,再过A1作A1C1BC,垂足为C1,过C1作C1A2AB,垂足为A2,再过A2作A2C2BC,垂足为C2,这样一直做下去,得到了一组线段CA1,A1C1,则CA1= , 5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服