ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.29MB ,
资源ID:1193150      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1193150.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(近三年高考全国卷理科立体几何真题.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

近三年高考全国卷理科立体几何真题.doc

1、 新课标卷高考真题1、(2016年全国I高考)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,且二面角DAFE与二面角CBEF都是(I)证明:平面ABEF平面EFDC;(II)求二面角EBCA的余弦值2、(2016年全国II高考)如图,菱形的对角线与交于点,点分别在上,交于点将沿折到位置,()证明:平面;()求二面角的正弦值3【2015高考新课标1,理18】如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC.()证明:平面AEC平面AFC;()求直线AE与直线CF所成角的余

2、弦值.4、2014新课标全国卷 如图13,四棱锥PABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点(1)证明:PB平面AEC;(2)设二面角DAEC为60,AP1,AD,求三棱锥EACD的体积图135、2014新课标全国卷 如图15,三棱柱ABC A1B1C1中,侧面BB1C1C为菱形,ABB1C.图15(1)证明:ACAB1;(2)若ACAB1,CBB160,ABBC,求二面角A A1B1 C1的余弦值6、(2017新课标)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,BAD=ABC=90,E是PD的中点()证明:直线CE平面PAB

3、;()点M在棱PC 上,且直线BM与底面ABCD所成角为45,求二面角MABD的余弦值7、(2017新课标)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD()证明:平面ACD平面ABC;()过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值8、(2017新课标卷)如图,在四棱锥PABCD中,ABCD,且BAP=CDP=90(12分) (1)证明:平面PAB平面PAD; (2)若PA=PD=AB=DC,APD=90,求二面角APBC的余弦值 1【解析】为正方形 面 面平面平面由知 平面平面平面平面面面,四

4、边形为等腰梯形以为原点,如图建立坐标系, ,设面法向量为.,即设面法向量为.即 设二面角的大小为.二面角的余弦值为2【解析】证明:,四边形为菱形,;又,又,面建立如图坐标系,设面法向量,由得,取,同理可得面的法向量,3,【答案】()见解析()又AEEC,EG=,EGAC,在RtEBG中,可得BE=,故DF=.在RtFDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=可得EF=,EGFG,ACFG=G,EG平面AFC,EG面AEC,平面AFC平面AEC. 6分()如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由()可得A(0,0)

5、,E(1,0, ),F(1,0,),C(0,0),=(1,),=(-1,-,).10分故.所以直线AE与CF所成的角的余弦值为. 12分4,解:(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EOPB.因为EO平面AEC,PB平面AEC,所以PB平面AEC.(2)因为PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直如图,以A为坐标原点,AD,AP的方向为x轴、y轴、z轴的正方向,|为单位长,建立空间直角坐标系Axyz,则D,E,.设B(m,0,0)(m0),则C(m,0),(m,0)设n1(x,y,z)为平面ACE的法向量,

6、则即可取n1.又n2(1,0,0)为平面DAE的法向量,由题设易知|cosn1,n2|,即,解得m.因为E为PD的中点,所以三棱锥EACD的高为.三棱锥EACD的体积V.5解:(1)证明:连接BC1,交B1C于点O,连接AO,因为侧面BB1C1C为菱形,所以B1CBC1,且O为B1C及BC1的中点又ABB1C,所以B1C平面ABO.由于AO平面ABO,故B1CAO.又B1OCO,故ACAB1.(2)因为ACAB1,且O为B1C的中点,所以AOCO.又因为ABBC,所以BOA BOC.故OAOB,从而OA,OB,OB1两两垂直以O为坐标原点,OB的方向为x轴正方向,|OB|为单位长,建立如图所示

7、的空间直角坐标系Oxyz.因为CBB160,所以CBB1为等边三角形,又ABBC,则A,B(1,0,0),B1,C.,AB,1BC.设n(x,y,z)是平面AA1B1的法向量,则即所以可取n(1,)设m是平面A1B1C1的法向量,则同理可取m(1,)则cosn,m.所以结合图形知二面角A A1B1 C1的余弦值为.6、【答案】()证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC= AD,BAD=ABC=90,BC AD,BCEF是平行四边形,可得CEBF,BF平面PAB,CF平面PAB,直线CE平面PAB;()解:四棱锥PABCD中,侧面PAD为等边三角形且

8、垂直于底面ABCD,AB=BC= AD,BAD=ABC=90,E是PD的中点取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP= ,PCO=60,直线BM与底面ABCD所成角为45,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2 , BN= ,MN= ,作NQAB于Q,连接MQ,所以MQN就是二面角MABD的平面角,MQ= = ,二面角MABD的余弦值为: = 7、【答案】()证明:如图所示,取AC的中点O,连接BO,ODABC是等边三角形,OBACABD与CBD中,AB=BD=BC,ABD=CBD,ABDCBD,AD=CDACD是直角

9、三角形,AC是斜边,ADC=90DO= ACDO2+BO2=AB2=BD2 BOD=90OBOD又DOAC=O,OB平面ACD又OB平面ABC,平面ACD平面ABC()解:设点D,B到平面ACE的距离分别为hD , hE 则 = 平面AEC把四面体ABCD分成体积相等的两部分, = = =1点E是BD的中点建立如图所示的空间直角坐标系不妨设AB=2则O(0,0,0),A(1,0,0),C(1,0,0),D(0,0,1),B(0, ,0),E =(1,0,1), = , =(2,0,0)设平面ADE的法向量为 =(x,y,z),则 ,即 ,取 = 同理可得:平面ACE的法向量为 =(0,1, )

10、cos = = = 二面角DAEC的余弦值为 8、【答案】(1)证明:BAP=CDP=90,PAAB,PDCD, ABCD,ABPD,又PAPD=P,且PA平面PAD,PD平面PAD,AB平面PAD,又AB平面PAB,平面PAB平面PAD;(2)解:ABCD,AB=CD,四边形ABCD为平行四边形, 由(1)知AB平面PAD,ABAD,则四边形ABCD为矩形,在APD中,由PA=PD,APD=90,可得PAD为等腰直角三角形,设PA=AB=2a,则AD= 取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D( ),B( ),P(0,0, ),C( ), , 设平面PBC的一个法向量为 ,由 ,得 ,取y=1,得 AB平面PAD,AD平面PAD,ABAD,又PDPA,PAAB=A,PD平面PAB,则 为平面PAB的一个法向量, cos = = 由图可知,二面角APBC为钝角,二面角APBC的余弦值为 16

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服