ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:1.22MB ,
资源ID:1192895      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1192895.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学解析几何知识点总结及高考核心点(实用版).doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学解析几何知识点总结及高考核心点(实用版).doc

1、对于高中生来说学好高中数学是重中之重,但是学好高中数学的解析几何知识更是不能马虎,方便大家学习和复习,本文就高中数学解析几何知识点及高考核心考点做了以下归纳:?高中数学解析几何高考核心考点1、准确理解(m)基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握(s)基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握(c)求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直(g)线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性(01)规划的意义及简单应用6

2、、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题高中数学解析几何需掌握知识点1.平行与垂直若直线l1和l2有斜截式方程l1:yk1xb1,l2:yk2xb2,则:(1)直线l1l2的充要条件是: k1k2且b1b2(2)直线l1l2的充要条件是:k1k212三种距离(1)两点间的距离平面上的两点P1(x1,y1),P2(x2,y2)间的距离公式|P1P2|.特别地,原点(0,0)与任意一点P(x,y)的距离|O

3、P|.(2)点到直线的距离:点P0(x0,y0)到直线l:AxByC0的距离d(3)两条平行线的距离两条平行线AxByC10与AxByC20间的距离d3、圆的方程的两种形式圆的标准方程(xa)2(yb)2r2,方程表示圆心为(a,b),半径为r的圆圆的一般方程对于方程x2y2DxEyF0(1)当D2E24F0时,表示圆心为,半径为的圆;(2)当D2E24F0时,表示一个点;(3)当D2E24F0时,它不表示任何图形4、直线与圆的位置关系直线与圆的位置关系有三种:相离、相切、相交判断直线与圆的位置关系常见的有:几何法:利用圆心到直线的距离d和圆半径r的大小关系dr相交;dr相切;dr相离直线与圆

4、相交直线与圆相交时,若l为弦长,d为弦心距,r为半径,则有r2d22,即l2,求弦长或已知弦长求解问题,一般用此公式5、两圆位置关系的判断两圆(xa1)2(yb1)2r(r0),(xa2)2(yb2)2r(r20)的圆心距为d,则1dr1r2两圆外离;2dr1r2两圆外切;3|r1r2|dr1r2(r1r2)两圆相交_;4d|r1r2|(r1r2)两圆内切;50d|r1r2|(r1r2)两圆内含6.椭圆一、椭圆的定义和方程1椭圆的定义平面内到两定点F1、F2的距离的和等于常数2a (大于|F1F2|=2c)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦点.定义中特别要注意

5、条件2a2c,否则轨迹不是椭圆;当2a2c时,动点的轨迹是线段;当2a2c时,动点的轨迹不存在。2椭圆的方程(1)焦点在x轴上的椭圆的标准方程:1(ab0)(2)焦点在y轴上的椭圆的标准方程:1(ab0)二、椭圆的简单几何性质(a2b2c2)标准方程1(ab0)1(ab0)图形性质范围axabybbxbaya对称性对称轴:x轴,y轴对称中心:坐标原点顶点A1(a,0),A2(a,0)B1(0,b),B2(0,b)A1(0,a),A2(0,a)B1(b,0),B2(b,0)性质轴长轴A1A2的长为2a 短轴B1B2的长为2b 焦距|F1F2|2c离心率e(0,1)a,b,c的关系c2a2b27.

6、双曲选一、双曲线的定义平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲线两个定点F1、F2叫做双曲线的焦点,两焦点的距离|F1F2|叫做双曲线的焦距.二、双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa_ ya或ya对称性对称轴:x轴、y轴对称中心:坐标原点对称轴:x轴,y轴对称中心:坐标原点顶点顶点坐标:A1(a,0),A2(a,0)顶点坐标:A1(0,a),A2(0,a)性质渐近线yxyx离心率e,e(1,)其中c实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|2a;线段B1B2叫做双曲线的虚

7、轴,它的长|B1B2|2b;a叫做双曲线的实半轴,b叫做双曲线的虚半轴a、b、c关系c2a2b2 (ca0,cb0)温馨提示:学海无涯苦做舟,书山有路勤为径。 获取帮助哪里找,文章一段有知晓。8抛物线(1)抛物线的概念平面内与一定点和一条定直线l的距离相等的点的轨迹叫做抛物线(定点不在定直线l上)。定点叫做抛物线的焦点,定直线l叫做抛物线的准线。方程叫做抛物线的标准方程。注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(,0),它的准线方程是 ;(2)抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:,.这四种抛物线的

8、图形、标准方程、焦点坐标以及准线方程如下表: 一次项的字母定轴(对称轴),一次项的符号定方向(开口方向)标准方程图形焦点坐标准线方程范围对称性轴轴轴轴顶点离心率说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调的几何意义:是焦点到准线的距离。2.焦点弦(以抛物线y22px(p0)为例) 设AB是过焦点F的弦,A(x1,y1),B(x2,y2),则|AB|x1x2p;|AB|min2p;x1x2;y1y2p;|AF|x1,|BF|x2.学习的过程也是归纳总结的过程,自己要对学过的知识点做归纳总结,能最大程度帮助到你是我们乐于做的事情,更多精彩视频一对一辅导沟通,为你答疑解惑,私信学习更多,进步更快,以下常用公式送给你?9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服