ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:645.52KB ,
资源ID:1192695      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1192695.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高考真题——三角函数及解三角形真题(加答案).doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考真题——三角函数及解三角形真题(加答案).doc

1、全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换(3题)1.(2015年1卷2) =( )(A) (B) (C) (D)【解析】原式= =,故选D.考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016年3卷)(5)若 ,则( )(A) (B) (C) 1 (D) 【解析】由,得或,所以,故选A考点:1、同角三角函数间的基本关系;2、倍角公式3.(2016年2卷9)若,则=(A)(B)(C)(D)【解析】,故选D二、三角函数性质(5题)4.(2017年3卷6)设函数,则下列结论错误的是()A的一个周期为 B的图像关于直线对称C的一个零点为D在单调递减【解析】函数

2、的图象可由向左平移个单位得到,如图可知,在上先递减后递增,D选项错误,故选D.5.(2017年2卷14)函数()的最大值是 【解析】 ,则,当时,取得最大值1.6(2015年1卷8)函数=的部分图像如图所示,则的单调递减区间为( )(A) (B)(C) (D) 【解析】由五点作图知,解得,所以,令,解得,故单调减区间为(,),故选D. 考点:三角函数图像与性质7. (2015年2卷10)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记BOP=x将动点P到A、B两点距离之和表示为x的函数f(x),则f(x)的图像大致为的运动过程可以看出,轨迹关于直线

3、对称,且,且轨迹非线型,故选B8.(2016年1卷12)已知函数 为的零点,为图像的对称轴,且在单调,则的最大值为(A)11(B)9(C)7(D)5考点:三角函数的性质三、三角函数图像变换(3题)9.(2016年2卷7)若将函数y=2sin 2x的图像向左平移个单位长度,则平移后图象的对称轴为(A) (B)(C) (D)【解析】平移后图像表达式为,令,得对称轴方程:,故选B10.(2016年3卷14)函数的图像可由函数的图像至少向右平移_个单位长度得到考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数11.(2017年1卷9)已知曲线C1:y=cos x,C2:y=sin (2x+),

4、则下面结论正确的是A把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解析】:熟悉两种常见的三角函数变换,先变周期和先变相位不一致。先变周期:先变相位:选D。【考点】:三角函数的变换。解三角形(8题,3小5大)一、解三角形(知一求一、知二求最值、知三可解)1.(

5、2016年2卷13)的内角A,B,C的对边分别为a,b,c,若,则 【解析】,由正弦定理得:解得2. (2017年2卷17)的内角的对边分别为,已知(1)求;(2)若,的面积为2,求 解析 (1)依题得因为,所以,所以,得(舍去)或.(2)由可知,因为,所以,即,得.因为,所以,即,从而,即,解得3.(2016年1卷17)的内角A,B,C的对边分别为a,b,c,已知 (I)求C;(II)若的面积为,求的周长【解析】(1)2cosC(acosB+bcosA)=c,由正弦定理得:2cosC(sinAcosB+sinBcosA)=sinC,2cosCsin(A+B)=sinC.因为A+B+C=,A,

6、B,C(0,),所以sin(A+B)=sinC0,所以2cosC=1,cosC=.因为C(0,),所以C=.(2)由余弦定理得:c2=a2+b2-2abcosC,7=a2+b2-2ab,(a+b)2-3ab=7,S=absinC=ab=,所以ab=6,所以(a+b)2-18=7,a+b=5,所以ABC的周长为a+b+c=5+.4. (2017年1卷17)的内角,的对边分别为,已知的面积为.(1)求的值;(2)若,求的周长.解析 (1)因为的面积且,所以,即.由正弦定理得,由,得.(2)由(1)得,又,因为,所以.又因为,所以,.由余弦定理得 由正弦定理得,所以 由,得,所以,即周长为.5. (

7、2015年1卷16)在平面四边形ABCD中,A=B=C=75,BC=2,则AB的取值范围.【解析1】如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在BCE中,B=C=75,E=30,BC=2,由正弦定理可得,即,解得=,平移AD ,当D与C重合时,AB最短,此时与AB交于F,在BCF中,B=BFC=75,FCB=30,由正弦定理知,即,解得BF=,所以AB的取值范围为(,).考点:正余弦定理;数形结合思想二、分割两个三角形的解三角形问题6.(2016年3卷8)在中,边上的高等于,则( )(A) (B) (C) (D)【解析】设边上的高线为,则,所以,由余弦定理,知,

8、故选C考点:余弦定理7.(2017年3卷17)的内角的对边分别为 ,已知,(1)求;(2)设为边上一点,且,求的面积解析 (1)由,得,即,又,所以,得.由余弦定理得.又因为代入并整理得,解得.(2)因为,由余弦定理得.因为,即为直角三角形,则,得.从而点为的中点,.8.(2015年2卷17)ABC中,D是BC上的点,AD平分BAC,ABD是ADC面积的2倍。()求 () 若,求BD和AC的长【解析】(1)SABD=ABADsinBAD,SADC=ACADsinCAD,因为SABD=2SADC,BAD=CAD,所以AB=2AC.由正弦定理可得=.(2)因为SABDSADC=BDDC,所以BD=.在ABD和ADC中,由余弦定理知,AB2=AD2+BD2-2ADBDcosADB,AC2=AD2+DC2-2ADDCcosADC,故AB2+2AC2=3AD2+BD2+2DC2=6.由(1)知AB=2AC,所以AC=1.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服