1、资源(1) 巧记口诀确定正方体表面展开图 6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考: 正方体盒巧展开,六个面儿七刀裁。 十四条边布周围,十一类图记分明: 四方成线两相卫,六种图形巧组合; 跃马失蹄四分开;两两错开一阶梯。 对面相隔不相连,识图巧排“7”、“凹”、“田”。 现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平
2、面展开图中周围有14条边长共有十一种展开图: 一、四方成线两相卫,六种图形巧组合 (1) (2) (3) (4) (5) (6) 以上六种展开图可归结为四方连线,即 ,另外两个小方块在四个方块的上下两侧,共六种情况。 二、跃马失蹄四分开 (1) (2) (3) (4) 以上四种情况可
3、归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。 三、两两错开一阶梯 这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。 四、对面相隔不相连 这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。 1 2 3 五、识图巧排“7”、“凹”
4、田” 1 2 3 4 5 (1) (2) (3) 这里介绍的是一种排除法。如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。 如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。 如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。 现举例说明: 例1.(2004海口市实验区)下面的平面图形中
5、是正方体的平面展开图的是( ) 解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。A、D都有“凹”形结构,B有“田”形结构,故应选C 例2.(2004扬州)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如右图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子. (注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示.) 解析:本题可用“跃马失蹄四分开”来解决。图中具备了三二相连的结构,故本题有四种答案,即小方块的位置有图中 所示的四种情况之一。
6、 试一试: 1.(2004浙江金华)下列图形中,不是立方体表面展开图的是( ) 2.(2004镇江)如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是( ) (B) (D) (C) (A) (正方体纸盒) 3.(2004海南)如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次是( ). (A)0,-2,1(B)0,1,-2
7、C)1,0,-2(D)-2,0,1 (2005济南中考题)在正方体的表面上画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是(如果没有把握,还可以动手试一试) 资源(2) 有关正方体表面展开图的解题规律 新课标数学课本中新添了正方体展开图,中考题也多次出现,这种题有利于培养学生的空间观念,也有利于培养学生的实践、探索、交流能力.本文对几种常见类型的解题规律,作初步的探讨. 一、判断给定的平面图形是否属正方体表面展开图 1.如以最长的正方形链横排为准
8、展开图一般是三行,个别是两行,不能是一行或四行,最长的一行(或列)在中间,可为2、3、4个,超过4个或长行不在中间的不是正方体表面展开图.如 都不是. 2.在每一行(或列)的两旁,每旁只能有1个正方形与其相连,超过1个就不是. 如 都不是. 中间的长行可折作正方体侧面,它两旁(或一旁)的正方形,与中间一行相连的折作底面,不相连的再下折作侧面. 具体说可有以下4类11种图形,如作旋转或翻折后,方向会不同,但相对位置不变,这些不重复计算. 1.“一·四·一”,中间一行4个作侧面,两边各1个分别作上下底面,共有6种. 2.“
9、二·三·一”(或一·三·二)型,中间3个作侧面,上(或下)边2个那行,相连的正方形作底面,不相连的再下折作另一个侧面,共3种. 3.“二·二·二”型,成阶梯状. 4.“三·三”型,两行只能有1个正方形相连. 二、找正方体相邻或相对的面 1.从展开图找.(1)正方体中相邻的面,在展开图中有公共边或公共顶点.如,或在正方形长链中相隔两个正方形.如中A与D.(2)在正方体中相对的面,在展开图中同行(或列)中,中间隔一个正方形.如ABCD中,A与C,B与D,或和中间一行(或列)均相连的两正方形亦相对. 例1 右图中哪两个字所在的正方形,在正方体中是相对的面.
10、 解 “祝”与“似”,“你”和“程”,“前”和“锦”相对. 例2 在A、B、C内分别填上适当的数. 使得它们折成正方体后,对面上的数互为倒数,则填入正方形A、B、C的三数依次是: (A),,1 (B),,1 (C)1,, (D),1, 分析 A与2,B与3中间都隔一个正方形,C与1分处正方形链两边且与其相连,选(A). 例3 在A、B、C内分别填上适当的数,使它们折成正方体后,对面上的数互为相反数. 分析 A与0,B与2,C和-1都分处正方形链两侧且与其相连,∴A─0,B─-2,C─1. 例4
11、 代出折成正方体后相对的面. 解 A和C,D和F,B和E是相对的面. 2.从立体图找. 例5 正方体有三种不同放置方式,问下底面各是几? 分析 先找相邻的面,余下就是相对的面. 上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对.再看6,和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,下底面依次是2、5、1. 例6 由下图找出三组相对的面. 分析 和2相连的是1、3、5、6,相对的是4,和3相连的是2、4、5、6,相对的是1,和6相连的是1、2、3、4,
12、相对的是5. 三、由带标志的正方体图去判断是否属于它的展开图 例7 如下图,正方体三个侧面分别画有不同图案,它的展开图可以是( ). 分析 基本方法是先看上下,后定左右,图A图B都是□和+两个面相对,不合题意,图C“□”和“○”之上,从立体图看“+”在右,符合要求.图D“□”和“+”之上,“○”在右,而立体图“○”应在左,不合要求,故选(C). 例8 下面各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样,它们是( ). 分析 首先找出上下两底,(1)是+和*,(2)是+和*,(3)(4)都是□和×,排除(1)(2),再检查侧面,(3)(4)顺序相同,所以选(3)(4).






