ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:920.54KB ,
资源ID:11858686      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11858686.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数字图像处理实验报告——图像复原实验.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数字图像处理实验报告——图像复原实验.doc

1、 实 验 报 告 课程名称 数字图像处理导论 专业班级 _______________ 姓 名 _______________ 学 号 _______________ 电气与信息学院 和谐 勤奋 求是 创新 实验题目 图像复原实验-空域滤波复原 实验室 DSP室&信号室 实验时间 2015 年 10月 13 日 实验类别 设计 同组人数 2 成 绩

2、 指导教师签字: 一.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 二.实验内容 1. 读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。 2. 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。 3. 使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。 4. 运用for循

3、环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像(提示:利用fspecial函数的’average’类型生成均值滤波器)。 5. 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。 6. 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 三.实验具体实现 1. 读出(自己选定.tif)这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。 I=imread('trees.tif'); subplot(1,3,1) imshow(I); title

4、' Original Image '); J = imnoise(I,'salt & pepper',0.05); %noise density=0.05 subplot(1,3,2) imshow(J); title(' salt & pepper '); K= imnoise(I,'gaussian',0.01,0.01); subplot(1,3,3) imshow(K); title(' gaussian ') 2. 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。 I=imread('m

5、oon.tif'); H = fspecial('sobel'); subplot(2,2,1) imshow(I); title(' Qriginal Image '); Sobel = imfilter(I,H,'replicate'); subplot(2,2,2) imshow(Sobel); title(' Sobel Image ') H = fspecial('laplacian',0.4); lap = imfilter(I,H,'replicate'); subplot(2,2,3) imshow(lap); title(' Laplacian Im

6、age ') H = fspecial('gaussian',[3 3],0.5); gaussian = imfilter(I,H,'replicate'); subplot(2,2,4) imshow(gaussian); title(' Gaussian Image ') 3. 使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。 originalRGB = imread('trees.tif'); subplot(3,2,1) imsho

7、w(originalRGB); title(' Qriginal Image '); h = fspecial('motion', 50, 45); %motion blurred filteredRGB = imfilter(originalRGB, h); subplot(3,2,2) imshow(filteredRGB); title(' Motion Blurred Image '); boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate'); subplot(3,2,3) imshow(bounda

8、ryReplicateRGB); title(' 0-Padding'); boundary0RGB = imfilter(originalRGB, h, 0); subplot(3,2,4) imshow(boundary0RGB); title('Replicate'); boundarysymmetricRGB = imfilter(originalRGB, h, 'symmetric'); subplot(3,2,5) imshow(boundarysymmetricRGB); title(' Symmetric '); boundarycircularRGB =

9、imfilter(originalRGB, h, 'circular'); subplot(3,2,6) imshow(boundarycircularRGB); title(' Circular'); 4. 运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像(提示:利用fspecial函数的’average’类型生成均值滤波器)。 I=imread('kids.tif'); J = imnoise(I,'salt & pepper',0.05); subplot(1

10、3,1) imshow(J); title(' salt & pepper Noise'); h=fspecial('average'); %Averaging Filtering J1=imfilter(J,h); for i=1:10 J1=imfilter(J,h); subplot(1,3,2) imshow(J1); title(' 10 Averaging Filtering'); end J2=imfilter(J,h); for i=1:20 J2=imfilter(J,h); subplot(1,3,3) imshow(J2); tit

11、le(' 20 Averaging Filtering'); end 5. 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。 I=imread('trees.tif'); J = imnoise(I,'salt & pepper',0.05); subplot(1,3,1) imshow(J); title(' Original Image '); h=fspecial('average'); %Averaging Filtering J1=imfilter(J,h); subplo

12、t(1,3,2) imshow(J1); title(' Averaging Filtering '); J2=medfilt2(J); %Median Filtering subplot(1,3,3) imshow(J2); title(' Median Filtering '); 6. 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 domain=[0 0 8 0 0; 0 0 8 0 0; 8 8 8 8 8;

13、 0 0 8 0 0; 0 0 8 0 0]; I=imread('trees.tif'); J = imnoise(I,'salt & pepper',0.05); subplot(1,2,1) imshow(J); title(' Original Image '); K1= ordfilt2(J,5,domain); subplot(1,2,2) imshow(K1); title(' 5*5 Smoothing Fitered Image');

14、 附录:可能用到的函数和参考结果**************报告里不能用参考结果中的图像 1) 读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。 I=imread('cameraman.tif'); subplot(1,3,1) imshow(I); title(' Qriginal Image '); J = imnoise(I,'salt & pepper',0.05); %noise density=0.05 subplot(1,3,2) imshow(J); title('

15、salt & pepper '); K= imnoise(I,'gaussian',0.01,0.01); subplot(1,3,3) imshow(K); title(' gaussian '); 图2.1 初始图像及椒盐噪声图像、高斯噪声污染图 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。 I=imread('trees.tif'); H = fspecial('sobel'); subplot(2,2,1) imshow(I); title(' Qriginal Image ');

16、 Sobel = imfilter(I,H,'replicate'); subplot(2,2,2) imshow(Sobel); title(' Sobel Image ') H = fspecial('laplacian',0.4); lap = imfilter(I,H,'replicate'); subplot(2,2,3) imshow(lap); title(' Laplacian Image ') H = fspecial('gaussian',[3 3],0.5); gaussian = imfilter(I,H,'replicate'); subplo

17、t(2,2,4) imshow(gaussian); title(' Gaussian Image ') 图2.2 原图像及各类低通滤波处理图像 3) 使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。 originalRGB = imread('sedemo_onion.png'); subplot(3,2,1) imshow(originalRGB); title(' Original Image '); h = fsp

18、ecial('motion', 50, 45); %motion blurred filteredRGB = imfilter(originalRGB, h); subplot(3,2,2) imshow(filteredRGB); title(' Motion Blurred Image '); boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate'); subplot(3,2,3) imshow(boundaryReplicateRGB); title(' 0-Padding'); boundary0RGB

19、 = imfilter(originalRGB, h, 0); subplot(3,2,4) imshow(boundary0RGB); title('Replicate'); boundarysymmetricRGB = imfilter(originalRGB, h, 'symmetric'); subplot(3,2,5) imshow(boundarysymmetricRGB); title(' Symmetric '); boundarycircularRGB = imfilter(originalRGB, h, 'circular'); subplot(3,2,6

20、) imshow(boundarycircularRGB); title(' Circular'); 图2.3 原图像及运动模糊图像 图2.4 函数imfilter各填充方式处理图像 4) 运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像。 I=imread('kids.tif'); J = imnoise(I,'salt & pepper',0.05); subplot(1,3,1) imshow(J); title(' salt & pepper Noise'); h=fspecial('av

21、erage'); %Averaging Filtering J1=imfilter(J,h); for i=1:10 J1=imfilter(J,h); subplot(1,3,2) imshow(J1); title(' 10 Averaging Filtering'); end J2=imfilter(J,h); for i=1:20 J2=imfilter(J,h); subplot(1,3,3) imshow(J2); title(' 20 Averaging Filtering'); end 图2.5 椒盐噪声污染图像经10次、20次均值滤波

22、图像 由图2.5可得,20次滤波后的效果明显好于10次滤波,但模糊程度也更强。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果 I=imread('kids.tif'); J = imnoise(I,'salt & pepper',0.05); subplot(1,3,1) imshow(J); title(' Original Image '); h=fspecial('average'); %Averaging Filtering J1=imfilter(J,h); subplot(1,3,2

23、) imshow(J1); title(' Averaging Filtering '); J2=medfilt2(J); %Median Filtering subplot(1,3,3) imshow(J2); title(' Median Filtering '); 图2.6 椒盐噪声污染图像及均值、中值滤波图像 从图2.6中可以看出,对于椒盐噪声污染的图像处理,中值滤波效果要明显好于均值滤波。经均值滤波器处理后的图像比均值滤波器中结果图像更加模糊。 6) 设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 d

24、omain=[0 0 8 0 0; 0 0 8 0 0; 8 8 8 8 8; 0 0 8 0 0; 0 0 8 0 0]; I=imread('kids.tif'); J = imnoise(I,'salt & pepper',0.05); subplot(1,2,1) imshow(J); title(' Original Image '); K1= ordfilt2(J,5, domain); subplot(1,2,2) imshow(K1); title(' 5*5 Smoothing Fitered Image'); 图2.7 椒盐噪声污染图像及5*5平滑滤波器掩模 掩模值为w=1/25*[1 1 1 1 1;1 1 1 1 1;1 1 1 1 1;1 1 1 1 1;1 1 1 1 1] 图2.8 椒盐噪声污染图像及5*5平滑滤波器掩模 掩模值为w= [0 0 8 0 0;0 0 8 0 0;8 8 8 8 8; 0 0 8 0 0;0 0 8 0 0] 16

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服