ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:46.50KB ,
资源ID:11766824      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11766824.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(前序遍历和后续遍历.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

前序遍历和后续遍历.doc

1、首先明确:一颗二叉树的前序遍历=根节点+左子树前序遍历 +右子树前序遍历 一颗二叉树的中序遍历=左子树中序遍历+根节点+右子树中序遍历 那么从前序遍历中取第一个点,就是根节点,知道了根节点,就可以找到中序遍历中跟节点的位置,那么就可以在中序遍历中找到左子树和右子树。 首先,我们看看前序、中序、后序遍历的特性:  前序遍历:      1.访问根节点      2.前序遍历左子树      3.前序遍历右子树  中序遍历:      1.中序遍历左子树      2.访问根节点      3.中序遍历右子树  后序遍历:      1.

2、后序遍历左子树      2.后序遍历右子树      3.访问根节点  好了,先说说用前序遍历和中序遍历求后序遍历  假设前序遍历为 adbgcefh, 中序遍历为 dgbaechf  前序遍历是先访问根节点,然后再访问子树的,而中序遍历则先访问左子树再访问根节点  那么把前序的 a 取出来,然后查找 a 在中序遍历中的位置就得到 dgb a echf  那么我们就知道 dgb 是左子树 echf 是右子树,因为数量要吻合  所以前序中相应的 dbg 是左子树 cefh 是右子树  然后就变成了一个递归的过程,具体代码如下:  C++代码   1. #include

3、    2. #include    3. using namespace std;   4.    5. int find(const string &str, char c)   6. {   7.     for (int i = 0; i < str.size(); ++ i)   8.         if (c == str[i])   9.             return i;   10.     return -1;   11. }   12.    13. bool PreMid(const string &p

4、re, const string &mid)   14. {   15.     if (pre.size() == 0)   16.         return false;   17.     if (pre.size() == 1)   18.     {   19.         cout << pre;   20.         return true;   21.     }   22.       23.     //根节点是第一个元素   24.     int k = find(mid, pre[0]);   25.        26.   

5、  string pretmp = pre.substr(1, k);   27.     string midtmp = mid.substr(0, k);   28.     PreMid(pretmp, midtmp);   29.        30.     pretmp = pre.substr(k + 1, pre.size() - k - 1);   31.     midtmp = mid.substr(k + 1, mid.size() - k - 1);   32.     PreMid(pretmp, midtmp);   33.        34.

6、    //变成后序遍历要最后输出节点的值   35.     cout << pre[0];   36. }   37.    38. int main()   39. {   40.     string pre, mid;   41.     while (cin >> pre >> mid)   42.     {   43.         PreMid(pre, mid);   44.         cout << endl;   45.     }   46. }   而已知后序遍历和中序遍历求前序遍历的过程差不多,但由于后序遍历是最后才访问根节点

7、的  所以要从后开始搜索,例如上面的例子,后序遍历为 gbdehfca,中序遍历为 dgbaechf  后序遍历中的最后一个元素是根节点,a,然后查找中序中a的位置  把中序遍历分成 dgb a echf,而因为节点个数要对应  后序遍历分为 gbd ehfc a,gbd为左子树,ehfc为右子树,这样又可以递归计算了  其他一些附带的代码上面已经有,这里就不重复贴了,具体代码如下:  C++代码   1. bool BackMid(const string &back, const string &mid)   2. {   3.     if (back.size() =

8、 0)   4.         return false;   5.        6.     if (back.size() == 1)   7.     {   8.         cout << back;   9.         return true;   10.     }   11.        12.     //根节点是最后一个元素   13.     int k = find(mid, back[back.size() - 1]);   14.        15.     //变成前序遍历要先输出节点的值   16.     cout

9、 << back[back.size() - 1];   17.        18.     string backTmp = back.substr(0, k);   19.     string midTmp = mid.substr(0, k);   20.     BackMid(backTmp, midTmp);   21.        22.     backTmp = back.substr(k, back.size() - k - 1);   23.     midTmp = mid.substr(k + 1, mid.size() - k - 1);  

10、24.     BackMid(backTmp, midTmp);   25. }   在二叉树中后序遍历序列为dabec,中序为debac,那它的前序遍历序列是什么?请大家给出详细的解释? 这样理解: 先序遍历是:根\左\右 中序遍历是:左\根\右 后序遍历是:左\右\根 先序,中序,后序的区别就是遍历根的先后,然后知道它们是递归的就ok了. 你看你给的序列,给出了后序遍历,那么我就马上能知道root节点是c了,那么前面的dabe就是c的左子树了,递归的看,dabe也是后序遍历得到的,所以e就是左子树的根节点...接下来就简单了,根据给出的中序遍历...就可以很快的构建出整个二叉树的结构了!

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服