ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:157.05KB ,
资源ID:1165645      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1165645.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(六年级数学工程问题(附例题答案).doc)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

六年级数学工程问题(附例题答案).doc

1、第七讲工程问题第七讲工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量=工作效率工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,因此甲的工作效率是,乙的工作效率是,我们想求两人合作所需时间,就要先求两人合作的工作效率,再根据基本

2、数量关系式,得到所需时间=工作量工作效率 =6(天).两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),可把工作量多设份额.如上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30(3+ 2)= 6(天)实际上我们把这个算式,先用30乘了一下,都变成整数计算,就方便些.10天与15天,体现了甲、乙两人工作效率之间比例关系.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是1510=32.当知道了两者工作效率之比,从比例角度考虑问题,也是

3、非常实用的.根据,两人合作时,甲应完成全部工作的,所需时间是(天).因此,在下面例题的讲述中,我们可以采用 “把工作量设为整体1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.二、典型例题例1. 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?解析:甲的工效:191/9 乙的工效:161/6 甲三天做了的:1/9 31/3 余下的工作:1 1/3 2/3 乙需做的天数:2/3 1/64(天)例2. 有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下

4、的由丙队做,又做了6天才完成。这个工程由丙队单独做需几天完成?解析:1-(1/24+1/30)8=2/5 62/5=15天例3. 某工程先由甲单独做63天,再由乙单独做28天即可完成,若由甲乙两人合作,需48天完成,现在甲先单独做42天,然后由乙来单独完成,那么还需要多少天?解析:某工程先由甲单独做63天,再由乙单独做28天可以完成,可看成甲乙合作28天,甲再另外做了35天所以甲的工效为(1-28/48)/35=1/84,乙的工效为1/48-1/84=1/112甲先单独做42天,然后由乙接着做,还需(1-42*1/84)/(1/112)=56天另一个方法:令甲每天做工程的百分比为x,乙每天做工

5、程的百分比为y则63x+28y=1 48(x+y)=1求得x=1/84 y=1/112若甲独做42天,则完成工程的42/84,即1/2,剩下1/2由乙完成,需要1/21/112=56天例4. 一项工程,甲乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的,甲乙单独做这项工程各需要多少天?甲单独做需X天,乙单独做需y天4*(1/X + 1/Y)+5/Y=1 1/x -1/y=1/30 X=10 Y=15甲单独做需10天,乙单独做需15天设甲单独做需X天,那么甲平均每天完成工程的1/X;因为甲比乙每天多完成这项工程的30分之一,就是说,乙平均每天完成1/X-1/30;按照已知条

6、件,甲乙合作4天,4/X+4*(1/x-1/30),随后,乙单独做了5天,5*(1/x-1/30),加在一起,完成了这项工程,即,4/X+4*(1/x-1/30) + 5*(1/x-1/30) =1x=10乙每天完成 1/10-1/30=1/15,即,乙单独做需15天例5. 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?16天中甲实际休息了16-3=13天甲完成了13/20乙完成了1-13/20=7/20需要时间:7/201/30=10.5天所以乙休息了16-10.5=5.5天例6.

7、 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?解析1:先让张某单独完成乙,李某单独完成甲。乙还剩1-8/15=7/15两人合作时间为:7/15/(1/15+1/20)=4 所以至少要工作:8+4=12(天)解析2:小李做甲工效高小李先做甲,小张先做乙,小李完成甲以后再和小张一起做乙至少需要:(1-8/15)(1/15+1/20)+8=12天例7. 甲、乙合做一件工作要15天才能完成,现在甲、乙合做10天后,再由乙独做6天,还剩下这件工作的1/10,甲单独完

8、成这件工作要多少天?解析:甲乙合作10天,完成了:101/152/3 乙独做6天完成了:12/31/107/30 乙每天完成:7/3067/180 甲独做需要:1(1/157/180)36(天)例8. 一项工程甲队单独做15天可以完成,乙队独坐10天可以完成。现在开始两队合作,但中间乙队因另有任务调走,从开始到完成任务,甲队工作了9天,乙队比甲队少工作了多少天?解析:甲独做一天的工效为1/15,乙独做一天的工效为1/10。合做分想:这项工程甲做了9天,剩下的都是由乙队完成的。可以用工作总量减去甲队9天的工作量,求出乙队工作量,再根据乙队的工作量和工效求出乙队的工作时间:(11/159)1/10

9、4(天)。所以乙队比甲队少工作天数为:945例9. 甲、乙合做一件工作,合作8天后,乙又独做5天,还剩下这件工作的1/6。已知乙单独完成这件工作要30天,那么甲单独完成这件工作要多少天?解析:1-1/30(8+5)-1/6=12/30=2/5 2/58=1/20 所以需要20天例10. 甲、乙合做一件工作,每天能完成全部工作的1/12,甲单独做6天,乙又单独做10天后,还剩下全部工作的11/30没有完成,甲单独完成全部工作要多少天?解析:6*1/12=1/2 1-11/30-1/2=2/15 (2/15)/(10-6)=1/30 1/(1/12-1/30)=20例11.一项工程,甲单独完成需1

10、2天,乙单独完成需9天。若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?解析1:当做鸡兔同笼问题处理,如果10天都是乙做,能完成:1/910=10/9,超出了:10/9-1=1/9,每天,甲比乙少做:1/9-1/12=1/36,甲做了:1/91/36=4天解析2:设甲做了X天 X1/12(10-X)1/91,得出X4甲做了4天例12. 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?解析:设甲做了x天,则乙做了3x天,丙做了

11、6x天,所以x/12+3x/18+6x/24=1,x/2=1x=2,所以总共用了2+3*2+6*2=20天例13. 一份稿件,甲、乙、丙三人单独打字需要的时间分别是20小时、24小时、30小时,现在三人合打,但甲因中途另有任务提前撤出,结果用12小时完成,甲只打了多少小时?解析1:甲、乙、丙每小时单独打出稿件的1/20,1/24,1/30,打了12小时,则乙和丙分别打了全部稿件的 12/24,12/30,12/24+12/30=9/10,则甲打了稿件的十分之一,(1/10)除以(1/20)=2甲打了2小时解析2:方程法:设甲打x小时。则:x/20+12*(1/24+1/30)=1,可解出X=2

12、例14. 一项工程甲单独完成要30天,乙单独完成要45天,丙单独完成要90天。现在由甲、乙、丙合作完成此工程,在工作过程中甲休息了2天,乙休息了3天,丙没有休息,最后把工程完成了,问完成这项工程前后一共用了多少天?解析1:方程法设是第x天完成的,(x-2)/30 +(x-3)/45 +x/90=1整理,得x=17解析2:(1+2/30+3/45)/(1/30+1/45+1/90)=17(天)解释:假若甲、乙没休息,那么应该完成总工程的1+2/30 +3/45例15. 一项工程,甲、乙两人合做4天后,再由甲单独做6天才完成全部任务。已知甲比乙每天多完成这项工程的1/80,则甲、乙单独完成各需多少

13、天?解析1:思路同第四题,设乙每天完成的工作占整个工作的x,4(x+x+1/80)+6(x+1/80)=1x=1/16,x+1/80=3/40,所以甲40/3天完成,乙16天完成解析2:甲比乙多完成全部任务的:1/80*(46)1/8(46表示甲一共做了10天)1-1/87/8(相当于两人均以乙的工效完成的工作量)44614(天)乙每天完成:7/8141/16,甲每天完成:1/161/803/40,单独完成甲要:13/4013又1/3(天)例16. 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?解析:甲乙合作的效率=136

14、=1/36,乙丙合作的效率=145=1/45,甲丙合作的效率=160=1/60,甲乙丙三人合作的效率=(1/36+1/45+1/60)2=1/30甲工作的效率=1/30-1/45=1/90三、练习题1. 某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天才可完成工程的一半?解:天2. 某工程甲队单独做需48天,乙队单独做需36天。甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。求乙队在中间单独工作的天数。3. 一条水渠,甲、乙两队合挖需30天完工。现在合挖12天后,剩下的乙队单独又挖了24天挖完。这条水渠由甲队单独挖需多少天?4. 单独干某项工程,甲队

15、需100天完成,乙队需150天完成。甲、乙两队合干50天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。甲队单独干需100天,甲的工作效5. 某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天?分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。答:甲队干了12天。6. 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现

16、甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?解一:仍设总工作量为1.甲每天比乙多完成因此这批零件的总数是丙车间制作的零件数目是答:丙车间制作了4200个零件.解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.乙、丙一起,8天完成.乙完成82=16(份),丙完成30-16=14(份),就知乙、丙工作效率之比是1614=87.已知甲、乙工作效率之比是 32= 128.综合一起,甲、乙、丙三人工作效率之比是1287.当三个车间一起做时,丙制作的零件个数是2400(12- 8) 7= 4200(个). 7.

17、 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时.解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4.三人共同搬完,需要60 2 (6+ 5+ 4)= 8(小时).甲需丙帮助搬运(60- 6 8)

18、 4= 3(小时).乙需丙帮助搬运(60- 5 8)4= 5(小时).8.一件工作,甲独做12天完成,乙独做18天完成,丙独做24天完成。这件工作先由甲做了若干天,然后乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作,求这件工作做完共用了多少天?【解析】:解法一:列方程解答。设甲先做了X天,则乙接着做了3 X天,丙做了(23)X天,由题意可得:X1/123X1/18(23)X1/241解得:X2所以这件工作做完共用时间:2(1323)20(天)。解法二:把甲的工效(一天的工作量)、乙工效的3倍、丙工效的6倍合起来的工作量看作一份,总工作量里有这样的几份,甲就工作了几天,可以求出甲工作的天数为:1(1/1231/18231/24)2(天)所以这件工作做完共用时间:2(1323)20(天)。6第 6 页 共 6 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服