ImageVerifierCode 换一换
格式:PPT , 页数:28 ,大小:834.50KB ,
资源ID:11639312      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11639312.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(Python环境的安装配置.ppt)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

Python环境的安装配置.ppt

1、单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样

2、式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,Python,开发环境配置,1,Windows,开发环境配置,2,到,Python,主页下载并安装,Python,基本开发和运行环境,网址:,www.p

3、ython.org/downloads/,根据操作系统不同选择不同版本,下载相应的,Python 3.0,系列版本程序,安装,安装,安装,方法,1,:启动,Windows,命令行工具,输入,python,启动,方法,2,:调用,IDLE,来启动,Python,图形化运行环境,启动,方法,3,:按照语法格式编写代码,编写可以用任何文本编辑器,保存为文件。,启动,方法,4,:打开,IDLE,,点击,Ctrl+N,打开一个新窗口,输入语句并保存,使用快键建,F5,即可运行该程序,启动,方法,5,:将,Python,集成到,Eclipse,、,PyCharm,等面向较大规模项目开发的集成开发环境中,启

4、动,Mac,OS,开发环境配置,11,方法一:从官网下载安装,安装,Python,方法二:,homebrew,ruby-e“$(curl,fsSL,Line Tools,,这时候也会自动提示安装,按提示进行即可,安装,Python,Homebrew,安装成功后在,终端,使用,brew install python3,这两个方法安装的,python,的位置是不一样的,大家可以用,:,which python,#,应该提示,/usr/local/bin/python3,$echo$PATH,#/usr/local/bin,需要在,/usr/bin,之前,安装,Python,在,终端,使用,Pyth

5、on3,安装,Python,Python 3.4,开始,内置了,pip,包管理器,能够直接使用,pip3,命令管理所需要的包,pip3 install numpy,pip3 install scipy,pip3 install matplotlib,pip3 install pandas,安装,Python,Mac,OS,最大的区别在于其内置,Python2.x,版本,当终端键入,python,时默认启动为,Python2,,我们在调用命令时都加上,3,即可,如,Python3,pip3,安装,Python,或者在,.bash_profile,里的添加,alias,:,$,subl.bash_

6、profile,#,使用,sublime text,打开,.bash_profile,文件,在文件里添加:,#alias,alias pip=pip3,安装,Python,这里强烈不建议大家将默认的全局,Python,路径更换为,Python3,,因为,Mac,底层系统是基于,Python2,的,强行更改会导致系统崩溃,但是只修改,pip,等包路径是可以的,安装,Python,采用上述某个方法,执行:,Hello,程序,Hello,程序只有一行代码,实在太小。本节给出,5,个,5,行代码左右的,Python,小程序(称为“微实例”),在,IDLE,交互式和批量式两种方式下练习。这,5,个微实例

7、分别给出了交互式执行过程和文件式内容(即全部程序内容)。,在编辑器中输入代码时,,#,及以后的文字不影响程序执行,可以不用输入。,#,后面的文字是注释,仅用来帮助读者理解程序。,运行,Python,小程序,微实例,1.1,:圆面积的计算,交互式执行过程如下,运行,Python,小程序,微实例,1.1,的文件式内容如下,运行,Python,小程序,微实例,1.2,:简单的人名对话,运行,Python,小程序,斐波那契数列(,Fibonacci sequence,),又称黄金分割数列,由意大利数学家,Leonardo Fibonacci,于,1202,年提出,并以其名字命名。该数列,F(n),定义如下:,F(0)=0,,,F(1)=1,,,F(n)=F(n-2)+F(n-1),,其中,n=2,。简单说,斐波那契数列中每个数是前两个数之和。斐波那契数列中邻近两个数的比值接近于黄金分割数,即,F(n)/F(n-1),接近,1.618,,这个比例的极限值就是黄金分割数。,斐波那契数列,微实例,1.3,:斐波那契数列,运行,Python,小程序,微实例,1.4,:同切圆的绘制,运行,Python,小程序,微实例,1.5,:日期和时间的输出,运行,Python,小程序,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服