ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:6.67MB ,
资源ID:1158543      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1158543.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(低信噪比下雷达通信一体化信号接收分离算法.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

低信噪比下雷达通信一体化信号接收分离算法.pdf

1、 :引用格式:齐振鹏,孟水仙,黄墨浩,等低信噪比下雷达通信一体化信号接收分离算法无线电工程,():,():低信噪比下雷达通信一体化信号接收分离算法齐振鹏,孟水仙,黄墨浩,尹良(北京邮电大学 信息与通信工程学院,北京;内蒙古自治区无线电监测站,内蒙古 呼和浩特)摘要:在雷达通信一体化系统中,针对传统的信号分离算法由于信号存在噪声而导致分离效果不理想的问题,提出一种低信噪比下雷达通信一体化信号接收分离算法。针对观测信号存在噪声的问题,提出一种 (),与传统的相比,融入通道注意力机制来增强其对不同通道间特征的学习总结能力;对去噪后的信号采用改进的三阶收敛算法进行分离。仿真实验表明,提出的分离算法相较

2、于传统的信号盲源分离算法在观测信号含噪情况下仍能具有较好的分离效果。关键词:雷达通信一体化信号;低信噪比;去噪模块;接收分离算法中图分类号:文献标志码:开放科学(资源服务)标识码():文 章 编 号:(),(,;,):,(),:;收稿日期:基金项目:国家重点研发计划():()引言随着无线通信和雷达技术的迅猛发展,二者在硬件资源和工作频段上的差异越来越小,为了高效利用硬件资源以及缓解频谱拥挤现象,雷达通信一体化技术得到了越来越多的关注和研究。目前雷达通信一体化发展方向主要分为分时体制、分频体制、分波束体制以及全共享体制,其中全共享体制由于可以同时实现侦测和通信已经成为主流的研究方向。全共享体制下

3、由于共享发射信号,探测性能和通信性能可能存在相互制约,主要分为以下个方向:基于通信信号,对通信信号进行优化使其具有雷达探测能力的共享波形;基于雷达信号,将通信信号加载到雷达信号上的全共享波形。文献提出了一种基于的雷达通信一体化系统,利用不同的码将雷达和通信数据的频谱扩展以避免相互干扰。文献对正交频分复用(专题:智能频谱监测 年 无线电工程 第 卷 第 期 ,)进行改进,实现一体化,但是信号不是恒包络,峰均比较高不利于在雷达的类放大器中放大,且对多普勒频移较敏感,仅适用于短距离通信与探测。文献提出了基于直接序列扩频的雷达通信一体化信号,通过对通信中的数字基带信号进行扩频,使其具有良好的自相关性,

4、从而满足雷达探测的要求。但这类对通信信号优化使之具有探测功能的信号一般传输功率不高,性能有限。近来,将通信信息加载到雷达信号的研究越来越多,文献对信号进行连续相位调制,对通信信号进行相位调制,在信号中加入相位信息从而得到一体化信号。文献通过改变调频率和初始频率参数组合的信号调制通信信息。文献研究了与的结合方法,将信号调制到波形中实现通信感知一体化。文献研究了框架并将其扩展到了中,但是雷达通信信号的分离不理想,会引入距离旁瓣调制从而导致多普勒扩展杂波。可见针对雷达通信一体化信号,为了能够发挥一体化的性能,雷达信号和通信信号在接收端的准确分离尤为重要。文献将和信号直接相乘得到一体化信号,并给出了对

5、应分离方法。文献提出了一种新的雷达通信一体化信号设计方法,将雷达信号和通信信号直接相加从而避免了寻找正交信号困难的问题,在接收端采用了盲信号处理的方法进行分离。这类信号生成简单且根据分析雷达的探测性能几乎不受影响,但是通信性能很大程度上依赖于分离算法将雷达信号与通信信号分离的准确程度,所以本文主要针对此类一体化信号的分离算法进行研究。此外,针对一体化波形分离大部分是基于雷达信号已知的情况下进行的研究,而且并未考虑真实情况下噪声的影响,由于环境中的噪声干扰,观测到的信号常常遇到严重的衰减和失真,这使得在低信噪比环境下实现准确的信号分离变得困难。近年来人工智能技术取得了飞速发展,给解决低信噪比下的

6、信号分离问题提供了新的可能性。本文针对真实情况下雷达通信一体化信号分离困难的问题,从信号的盲处理角度出发,对含噪观测信号进行处理。首先针对低信噪比的问题,提出了(),对传统的进行改进,从而有效地降低噪声水平,提高信号质量;其次针对去噪后的观测信号,利用改进的三阶收敛算法对信号进行分离。通过仿真实验论证,本文提出的算法相较于传统的信号盲源分离算法可以在较低信噪比的情况下得到更快更好的分离效果。雷达通信一体化信号模型本文以常见的雷达调制和通信调制为例,文献分别给出了常见的相乘和相加种将通信信息加载到雷达信号的一体化信号设计方法,由于乘性合成的一体化信号经过同态滤波后可以转变为加性合成,从而用加性合

7、成的一体化信号处理方法进行处理。因此,本文对加性合成的雷达通信一体化信号进行信号处理算法的研究。雷达通信一体化信号生成流程示意如图所示。图雷达通信一体化信号生成流程示意 雷达通信一体化信号定义为:()()(),()式中:()为雷达信号,()为通信信号,和为雷达信号和通信信号的合成系数。本文中雷达信号()为信号,其数学模型为:()槡,()式中:为信号能量,为信号调制斜率,为调频带宽,为脉冲宽度。通信信号()为信号,其数学模型为:()槡(),()式中:为信号能量,()为根升余弦成型滤波器,为符号间隔,。()低信噪比下一体化信号分离算法目前已有的关于一体化信号分离算法的研究大多未考虑低信噪比强噪声的

8、影响,如文献未考虑信号中存在噪声的情况,文献仅考虑信噪比在 及以上情况下的分离算法效果。在实际场景中,分离算法通常会受到信号中存在的强噪声的干扰,导致分离效果不理想。为了使一体化信号分离算法更符合真实情况,本文考虑信号存在强噪声专题:智能频谱监测 的情况,含噪信号模型为()()(),其中()为一体化信号分量,()为高斯噪声分量。本文首先对采集到的时域含噪观测信号利用将其从一维时域升至二维时频域,相较于时域,信号在时频域中分布较为稀疏,更方便学习到噪声分布情况,从而实现信号恢复和噪声抑制。然后,与目前绝大多数数据增强方法不同的是,大多数方法只利用了含噪信号后的幅度谱信息进行去噪,忽略了相位谱信息

9、。为了增强降噪效果,充分利用信号信息,本文将信号的实部和虚部拼接成双通道数据送入中进行噪声抑制。最后,对去噪后的一体化信号以盲处理的方法进行分离,利用改进的高阶算法对信号进行分离。算法流程如图所示。图低信噪比下一体化信号分离算法流程 基于的信号去噪模块传统的是针对含噪图像问题提出的一种网络模型,其结合了残差学习的优点,在网络输出处选择残差图片即噪声进行输出,在图像去噪领域取得了很好的效果。本文提出的是一种改进的,针对在特征提取方面的局限性进行改进,引入基于通道的压缩激励(,)注意力机制。通过全局自适应池化和通道权重学习,网络能够更加关注有意义的特征。这样可以提高特征的表达能力,减少特征之间的冗

10、余和噪声干扰,增强图像去噪的效果,结构如图所示。()去噪模块整体结构()模块结构图基于的信号去噪模块结构 由图可以看出,共层。第层为输入层,包含一个卷积层、一个激活函数层和一个注意力机制层。卷积层含有个卷积核,卷积核大小为,激活函数层选用函数,注意力机制层包含一个压缩操作和一个激励操作。压缩操作对卷积层得到的个通道低级特征图进行全局平均化。激励操作则由个全连接层和非线性激活函数组成,通过非线性变换建立每个通道特征图之间的联系并标定各个特征图的权重,最后对每个通道的特征图乘以权重完成通道注意力对原始特征的重新标定。第 层均由一个卷积层、一个批归一化层、一个激活函数层以及一个注意力机制层组成,卷积

11、层含有个的卷积核,卷积后加入层加快模型的收敛速度。最后一层利用一个卷积层来还原输出,可以得到基于时频实部数据学习到的噪声信息和基于时频虚部数据学习到的噪声信息。专题:智能频谱监测 年 无线电工程 第 卷 第 期 在网络训练时,输入是含噪的时频数据,标签为干净的时频数据,在网络输出时进行残差操作,利用输入的含噪数据减去网络预测输出的噪声即可得到预测的干净时频数据,最后对预测得到的去噪后数据做操作从而得到去噪后的时域雷达通信一体化数据。改进的一体化信号分离算法假设得到的去噪后一体化信号为,它是由个独立非高斯分布的未知原始信号 通过混合矩阵线性组合而来,且混合矩阵列满秩,即 。在未知的情况下,为了能

12、够从混合信号中恢复,需要构建一个分离矩阵使得分离后的信号 ,当 时,即可在没有噪声的情况下完全恢复原始信号。基于负熵最大化的算法是一种基于以上线性模型的混合矩阵求解算法,它的目标函数为:()()(),()式中:为零均值且和相同协方差的高斯向量,为非二次函数。最大化()需要找到一个使得具有最大的非高斯性,一般利用拉格朗日条件函数求取极值。在求取极值时大多是基于经典的牛顿迭代法进行优化求解的。文 献介绍了高阶的牛顿迭代算法,为了提高收敛速度和分离效果,本文利用基于三阶牛顿迭代法的算法对一体化进行分离。与经典牛顿迭代法相比,三阶牛顿迭代法分为步,具体如下:()()()()()。()将其带入到传统求解

13、迭代式,化简后可得改进后的混合矩阵求解迭代式:()()()()(),()式中:()。此外,相较于经典的算法,改进后的算法仅在迭代部分进行改进,其他步骤均和经典方法一致,具体流程如图所示。图算法流程 算法具体步骤为:中心化处理。对混合信号进行零均值化处理。白化处理。由于接收到的混合信号彼此之间可能会有相关性,所以对其进行白化处理去除相关性 ,其中为白化后的信号,为白化矩阵。初始化参数设置。设置非线性函数、随机初始化估计分量个数、最大迭代次数、收敛的精度以及随机初始化单位范数的分离矩阵。三阶牛顿迭代法求解混合矩阵。标准化分离矩阵。对分离矩阵进行标准化()()()。判断是否收敛,若不满足收敛条件则继

14、续;若收敛则输出分离矩阵。算法仿真与验证 实验数据生成为了检验本文所提算法效果,本文用仿真了基带条件下的单脉冲内一体化信号,其中设置信号脉宽为,采样率为,信号扫频带宽为,信号符号速率为,成型滤波器为根升余弦滤波器,滚降系数为。本文利用蒙特卡罗法随机生成和信号,并按随机生成的不同合成系数进行合成,共得到组一体化信号,分别对信号加入 的高斯噪声,模拟信号在真实环境中的噪声干扰状况。含噪数据时频图对比如图所示。专题:智能频谱监测 图不同信噪比下含噪一体化信号时频图对比 由图可以看出,随着信噪比的恶化,噪声对一体化的干扰越来越明显,时频图中的噪点越来越多,会淹没部分信号。去噪效果仿真验证首先利用组(每

15、组个)不同信噪比情况下的观测信号样本制作数据集,同时把相应的干净样本作为标签。然后将数据集按照 的比例划分训练集、测试集和验证集。设置网络训练的超参数如表所示。表训练超参数 超参数具体设置优化器损失函数(均方损失函数)学习率 学习率更新策略(每隔个,学习率衰减为当前的)为了证明所提算法的有效性,本文做了和算法模型的对比实验。经过轮迭代,算法在验证集上的均方误差为,而算法在验证集上的均方误差为,可见算法模型对含噪时频数据去噪后更接近于原始干净的时频数据。为了更直观地展示所提去噪算法的效果,本文以信噪比为指标衡量算法去噪能力,信噪比定义为:(),()式中:为干净一体化信号数据,为去噪后的信号数据。

16、图展示了本文所提和原始对噪声信号的去噪效果对比。图去噪效果对比 图展示了针对不同信噪比情况下的一体化信号去噪效果。图去噪效果 由图可以看出,本文所提改进后的相较于传统的在信号降噪效果上要提高 ,且相较于原始含噪信号信噪比可提升 ,结果表明本文所提算法可以很好地抑制噪声,提升信号质量。由图可以看出,对含噪信号进行了较好的恢复,对噪声点进行了有效压制。专题:智能频谱监测书书书 年 无线电工程 第 卷 第 期 分离算法效果仿真验证为了检验所提基于三阶迭代收敛的 算法的有效性,以 下 去噪后的 组数据作为 混 合 信 号 并 进 行 分 离,分 别 利 用 改 进 后 的 算法和传统的 算法对混合信号

17、盲源分离,随 机 进 行 次 实 验,实 验 结 果 如 表 所示。表 改进前后分离迭代次数对比 算法未收敛次数最小收敛次数最大收敛次数平均收敛次数收敛次数标准偏差改进前迭代次数 改进后迭代次数 由表 可以看出,改进后的分离算法相较于传统的 算法收敛次数更少,更容易收敛且收敛迭代次数更稳定。为了衡量算法的分离效果,本文以相似系数为指标衡量算法的分离效果。相似系数的定义如下:(),()()()()(槡),()式中:()和()分别为源信号和分离后信号,为样本采样点数。利用上式计算本文所提算法在 下源信号和分离信号的相关度,结果如表 所示。表 下分离信号相似系数 分离信号相似系数源信号 源信号 分离

18、信号 分离信号 由表 可以看出,在 下,分离信号 与 源信号相似系数达到了 ,与另一源信号相似系数为 ,分离信号 与 源信号相似系数达到了 ,与另一源信号的相似系数为 ,可见在分离得到的信号中极大地保留了原本信号信息,抑制了另一成分信号的信息。分离前后效果如图 所示。图 低信噪比下一体化信号分离算法过程效果 为了更明显地展示本文所提算法在低信噪比下的有效性,在 ,本文所提低信噪比下的算法与传统信号分离算法对比结果如图 所示。图 低信噪比下本文算法与传统算法盲分离对比效果 由图 可以看出,本文所提的低信噪比下一体化信号分离算法相较于传统的 和 等分离算法,在低信噪比下具有更好的分离效果,且随着信

19、噪比的增加,分离得到 的信号相似度从 增加到 ,的信号相似度从 增加到 ,而传统的分离算法最高只能达到 ,可见本文所提算法能够更好地完成一体化信号的分离任务。结束语本文针对传统雷达通信一体化信号分离算法在含噪情况下分离效果不理想的问题进行研究。针对专题:智能频谱监测 信号含有强噪声的问题,提出 进行噪声抑制和信号恢复;针对传统信号分离算法分离速度慢、迭代 分 离 不 稳 定 的 问 题,利 用 基 于 三 阶 收 敛 的 算法进行快速稳定收敛来恢复雷达和通信信号。实验结果表明,所提低信噪比下雷达通信一体化信号分离算法在 情况下仍能对混合信号进行准确分离,相较于传统信号分离算法具有更强的鲁棒性,

20、更加有效稳定。?参考文献 李朝伟,周希元,刘福来 雷达 通信信号侦察一体化技术 舰船电子对抗,():,:,:,:,:,:,:邹广超,刘以安,吴少鹏,等 雷达 通信一体化系统设计 计算机仿真,():昌志松 雷达通信一体化系统的信号处理与识别技术研究 西安:西安电子科技大学,李佳洋 毫米波直升机雷达通信一体化研究 成都:电子科技大学,杨云飞,马晓岩,杨瑞娟,等 雷达通信一体化共享信号探测性能研究 空军预警学院学报,():卢俊,张群飞,史文涛,等 探测通信一体化研究现状与发展趋势 信号处理,():,:,:,:,:刘少华,黄志星 基于扩频的雷达通信一体化信号的设计 雷达科学与技术,():杨慧婷,周宇,

21、谷亚彬,等 参数调制多载波雷达通信共享信号设计 雷达学报,():,():,:,()():,:邹广超 雷达通信一体化设计的信号与处理方法研究 无锡:江南大学,刘志鹏 雷达通信一体化波形分离算法研究 中国电子科学研究院学报,():,:,:,():,():雍龙泉 非线性方程牛顿迭代法研究进展 数学的实践与认识,():作者简介齐振鹏男,(),硕士研究生。主要研究方向:信号检测识别、信号处理。孟水仙女,(),硕士,高级工程师。主要研究方向:无线电监测、定位技术。黄墨浩男,(),硕士研究生。主要研究方向:信号调制识别、信号检测处理。尹良男,(),博士,副教授,博士生导师。主要研究方向:频谱管理、认知无线电。专题:智能频谱监测

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服