ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:139.53KB ,
资源ID:1156049      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1156049.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学高考总复习正弦定理与余弦定理习题及详解.doc)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学高考总复习正弦定理与余弦定理习题及详解.doc

1、高考总复习高中数学高考总复习正弦定理与余弦定理习题及详解一、选择题1(2010聊城市、银川模拟)在ABC中,a、b、c分别是三内角A、B、C的对边,且sin2Asin2C(sinAsinB)sinB,则角C等于()A. B.C. D.答案B解析由正弦定理得a2c2(ab)b,由余弦定理得cosC,0C,C.2(文)(2010泰安模拟)在ABC中,若A60,BC4,AC4,则角B的大小为()A30 B45C135 D45或135答案B解析ACsin604244,故ABC只有一解,由正弦定理得,sinB,44,BA,B45.(理)在ABC中,角A、B、C的对边分别是a、b、c,A,a,b1,则c(

2、)A1 B2C.1 D.答案B解析bsinA10,c2.故选B.3在ABC中,角A、B、C的对边分别是a、b、c,若a2,b2,且三角形有两解,则角A的取值范围是()A. B.C. D.答案A解析由条件知bsinAa,即2sinA2,sinA,ab,AB,A为锐角,0A.点评如图,AC2,以C为圆心2为半径作C,则C上任一点(C与直线AC交点除外)可为点B构成ABC,当AB与C相切时,AB2,BAC,当AB与C相交时,BAC,因为三角形有两解,所以直线AB与C应相交,0BAC0,b0,ab0,所以ab.5(文)(2010天津理)在ABC中,内角A、B、C的对边分别是a、b、c,若a2b2bc,

3、sinC2sinB,则A()A30 B60C120 D150答案A解析由余弦定理得:cosA,sinC2sinB,c2b,c22bc,又b2a2bc,cosA,又A(0,180),A30,故选A.(理)(2010山东济南)在ABC中,角A、B、C的对边分别为a、b、c,若(a2c2b2)tanBac,则角B的值为()A. B.C.或 D.或答案D解析由(a2c2b2)tanBac得,tanB,再由余弦定理cosB得,2cosBtanB,即sinB,角B的值为或,故应选D.6ABC中,a、b、c分别为A、B、C的对边,如果a、b、c成等差数列,B30,ABC的面积为0.5,那么b为()A1 B3

4、C. D2答案C解析acsinB,ac2,又2bac,a2c24b24,由余弦定理b2a2c22accosB得,b.7(2010厦门市检测)在ABC中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a1,b,则SABC等于()A. B.C. D2答案C解析A、B、C成等差数列,B60,sinA,A30或A150(舍去),C90,SABCab.8(2010山师大附中模考)在ABC中,cos2(a、b、c分别为角A、B、C的对边),则ABC的形状为()A直角三角形 B正三角形C等腰三角形 D等腰三角形或直角三角形答案A解析cos2,sinCcosBsinA,sinCcos

5、Bsin(BC),sinBcosC0,0B,C0,cosB0知A、B均为锐角,tanA1,0A,0B,C为最大角,由cosB知,tanB,BA,b为最短边,由条件知,sinA,cosA,sinB,sinCsin(AB)sinAcosBcosAsinB,由正弦定理知,b.10(2010山东烟台)已知非零向量,和满足0,且,则ABC为()A等边三角形B等腰非直角三角形C直角非等腰三角形D等腰直角三角形答案D解析cosACB,ACB45,又0,A90,ABC为等腰直角三角形,故选D.二、填空题11(文)判断下列三角形解的情况,有且仅有一解的是_a1,b,B45;a,b,A30;a6,b20,A30;

6、a5,B60,C45.答案解析一解,asinB1,有一解两解,bsinA6,无解一解,已知两角和一边,三角形唯一确定(理)在锐角ABC中,边长a1,b2,则边长c的取值范围是_答案c0,c25.0c0,c23.c.综上,c.12(2010上海模拟)在直角坐标系xOy中,已知ABC的顶点A(1,0),C(1,0),顶点B在椭圆1上,则的值为_答案2解析由题意知ABC中,AC2,BABC4,由正弦定理得2.13(文)(2010沈阳模拟)在ABC中,角A、B、C的对边分别是a、b、c,若b2c2a2bc,且4,则ABC的面积等于_答案2解析b2c2a2bc,cosA,4,bccosA4,bc8,SA

7、CABsinAbcsinA2.(理)(2010北京延庆县模考)在ABC中,a、b、c分别为角A、B、C的对边,若ac2b且sinB,当ABC的面积为时,b_.答案2解析ac2b,a2c22ac4b2(1)SABCacsinBac,ac(2)sinB,cosB(由ac2b知B为锐角),a2c2b2(3)由(1)、(2)、(3)解得b2.14(2010合肥市质检)在ABC中,则角B_.答案解析依题意得sin2Asin2Bsin(AB)(sinAsinC)sinAsinCsin2C,由正弦定理知:a2b2acc2,a2c2b2ac,由余弦定理知:cosB,B.三、解答题15(文)(2010广州六中)

8、在ABC中,角A、B、C所对的边分别为a、b、c,且满足cos,3.(1)求ABC的面积;(2)若bc6,求a的值解析(1)cos,cosA2cos21,sinA.又由3得,bccosA3,bc5,SABCbcsinA2.(2)bc5,又bc6,b5,c1或b1,c5,由余弦定理得a2b2c22bccosA20,a2.(理)(2010山东滨州)已知A、B、C分别为ABC的三边a、b、c所对的角,向量m(sinA,sinB),n(cosB,cosA),且mnsin2C.(1)求角C的大小;(2)若sinA,sinC,sinB成等差数列,且()18,求边c的长解析(1)mnsinAcosBsinB

9、cosAsin(AB)在ABC中,由于sin(AB)sinC.mnsinC.又mnsin2C,sin2CsinC,2sinCcosCsinC.又sinC0,所以cosC.而0C,因此C.(2)由sinA,sinC,sinB成等差数列得,2sinCsinAsinB,由正弦定理得,2cab.()18,18.即abcosC18,由(1)知,cosC,所以ab36.由余弦定理得,c2a2b22abcosC(ab)23ab.c24c2336,c236.c6.16(文)在ABC中,已知AB,BC2.(1)若cosB,求sinC的值;(2)求角C的取值范围解析(1)在ABC中,由余弦定理知,AC2AB2BC

10、22ABBCcosB34229.所以AC3.又因为sinB,由正弦定理得.所以sinCsinB.(2)在ABC中,由余弦定理得,AB2AC2BC22ACBCcosC,3AC244ACcosC,即AC24cosCAC10.由题意知,关于AC的一元二次方程应该有解,令(4cosC)240,得cosC,或cosC(舍去,因为ABBC)所以,0C,即角C的取值范围是.点评1.本题也可用图示法,如图:A为B上不在直线BC上的任一点,由于rAB,故当CA与B相切时C最大为,故C.2高考命题大题的第一题一般比较容易入手,大多在三角函数的图象与性质、正余弦定理、平面向量等内容上命制,这一部分要狠抓基本原理、公

11、式、基本方法的落实(理)(2010东北师大附中、辽宁省实验中学联考)设ABC的内角A、B、C所对的边分别为a、b、c,且acosCcb.(1)求角A的大小;(2)若a1,求ABC的周长l的取值范围解析(1)由acosCcb得sinAcosCsinCsinB又sinBsin(AC)sinAcosCcosAsinCsinCcosAsinC,sinC0,cosA,又0Aa1,labc(2,3,即ABC的周长l的取值范围为(2,317(文)ABC中内角A、B、C的对边分别为a、b、c,向量m(2sinB,),n(cos2B,2cos21)且mn.(1)求锐角B的大小;(2)如果b2,求ABC的面积SA

12、BC的最大值分析(1)问利用平行向量的坐标表示将向量知识转化为三角函数,利用三角恒等变换知识解决;(2)问利用余弦定理与基本不等式结合三角形面积公式解决解析(1)mn,2sinBcos2Bsin2Bcos2B,即tan2B又B为锐角,2B(0,),2B,B.(2)B,b2,由余弦定理cosB得,a2c2ac40又a2c22ac,ac4(当且仅当ac2时等号成立)SABCacsinBac(当且仅当ac2时等号成立),点评本题将三角函数、向量与解三角形有机的结合在一起,题目新疑精巧,难度也不大,即符合在知识“交汇点”处构题,又能加强对双基的考查,特别是向量的坐标表示及运算,大大简化了向量的关系的运算,该类问题的解题思路通常是将向量的关系用坐标运算后转化为三角函数问题,然后用三角函数基本公式结合正、余弦定理求解(理)(2010山师大附中模考)在ABC中,角A、B、C的对边分别为a、b、c,已知sinB,且a、b、c成等比数列(1)求的值;(2)若accosB12,求ac的值解析(1)依题意,b2ac由正弦定理及sinB得,sinAsinCsin2B.(2)由accosB12知cosB0,sinB,cosB(b不是最大边,舍去负值)从而,b2ac13.由余弦定理得,b2(ac)22ac2accosB.13(ac)2213.解得:ac3.含详解答案

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服