ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:319.51KB ,
资源ID:1155750      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1155750.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(-中考圆压轴题训练.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

-中考圆压轴题训练.doc

1、 成都中考圆压轴题训练   一.选择题(共15小题) 1.如图1,⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在上取一点D,分别作直线CD,ED,交直线AB于点F、M. (1)求∠COA和∠FDM的度数; (2)求证:△FDM∽△COM; (3)如图2,若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M.试判断:此时是否仍有△FDM∽△COM?证明你的结论. 2.已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E. (1)求证:△ABE∽△DBC; (2)已知BC=,CD

2、求sin∠AEB的值; (3)在(2)的条件下,求弦AB的长. 3.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E. (1)当BC=1时,求线段OD的长; (2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由; (3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域. 4.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣3,O),C(,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于

3、F,求证:EH=FH. (3)在(2)的条件下求AF的长. 5.已知:如图,△ABC内接于⊙O,BC为直径,AD⊥BC于点D,点E为DA延长线上一点,连接BE,交⊙O于点F,连接CF,交AB、AD于M、N两点. (1)若线段AM、AN的长是关于x的一元二次方程x2﹣2mx+n2﹣mn+m2=0的两个实数根,求证:AM=AN; (2)若AN=,DN=,求DE的长; (3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2﹣16ky+10k2+5=0的两个实数根,求直径BC的长. 6.如图,以⊙O两条互相垂直的直径所在直线为轴

4、建立平面直角坐标系,两坐标轴交⊙O于A,B,C,D四点,点P在弧CD上,连PA交y轴于点E,连CP并延长交y轴于点F. (1)求∠FPE的度数; (2)求证:OB2=OE•OF; (3)若⊙O的半径为,以线段OE,OF的长为根的一元二次方程为x2﹣x+m=0,求直线CF的解析式; (4)在(3)的条件下,过点P作⊙O的切线PM与x轴交于点M,求△PCM的面积. 7.如图,AB为⊙O直径,且弦CD⊥AB于,过点的切线与AD的延长线交于点. (1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC. (2)若cos∠C=,DF=3,求⊙O的半径. (3)猜测线段A

5、E、BE、CN、CB之间有怎样的数量关系?证明你的猜想. 8.已知:AB是⊙O的直径,DA、DC分别是⊙O的切线,点A、C是切点,连接DO交弧AC于点E,连接AE、CE. (1)如图1,求证:EA=EC; (2)如图2,延长DO交⊙O于点F,连接CF、BE交于点G,求证:∠CGE=2∠F; (3)如图3,在(2)的条件下,DE=AD,EF=2,求线段CG的长. 9.已知:如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连结AD. (1)求证:AD•BE=DE•BC; (2)请判断线段BM、MN、MF之间有怎样的等量关系,并给

6、予证明; (3)当∠ACB=30°,⊙O半径为4时,求的值. 10.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F. (1)求证:直线EF是⊙O的切线; (2)若CF=3,cosA=,求出⊙O的半径和BE的长; (3)连接CG,在(2)的条件下,求的值. 11.如图,在⊙S中,AB是直径,AC、BC是弦,D是⊙S外一点,且DC与⊙S相切于点C,连接DS,DB,其中DS交BC于E,交⊙S于F,F为弧BC的中点. (1)求证:DB=DC; (2)若AB=10,AC=6,P是线段DS上的动点,设DP

7、长为x,四边形ACDP面积为y. ①求y与x的函数关系式; ②求△PAC周长的最小值,并确定这时x的值. 12.如图,AB是⊙0的直径,AC切⊙0于点A,AD是⊙0的弦,OC⊥AD于F交⊙0于E,连接DE,BE,BD.AE. (1)求证:∠C=∠BED; (2)如果AB=10,tan∠BAD=,求AC的长; (3)如果DE∥AB,AB=10,求四边形AEDB的面积. 13.如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC. (1)求证:D是的中点; (2)求证:∠DAO=∠B+∠

8、BAD; (3)若,且AC=4,求CF的长. 14.己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD. (1)求证:∠DAC=∠DBA; (2)求证:P是线段AF的中点; (3)若⊙O的半径为5,AF=,求tan∠ABF的值. 15.在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射线CB于点F. (1)如图,求证:△ADE∽△AEP; (2)设OA=x,AP=y,求y关

9、于x的函数解析式,并写出它的定义域; (3)当BF=1时,求线段AP的长.   二.解答题(共15小题) 16.如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8. (1)求点C的坐标; (2)连接MG、BC,求证:MG∥BC; (3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律. 17.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D

10、且ED⊥AC. (1)试判断△ABC的形状,并说明理由; (2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长. 18.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF. (1)求证:PC是⊙O的切线; (2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么? (3)在(2)的条件下,若OH=1,AH=2,求弦AC的长. 19.如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、

11、BO、AB,并延长BO与切线PA相交于点Q. (1)求证:PB是⊙O的切线; (2)求证:AQ•PQ=OQ•BQ; (3)设∠AOQ=α,若,OQ=15,求AB的长. 20.如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G. (1)求证:AE•FD=AF•EC; (2)求证:FC=FB; (3)若FB=FE=2,求⊙O的半径r的长. 21.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长A

12、O与⊙O交于点C,连接BC,AF. (1)求证:直线PA为⊙O的切线; (2)试探究线段EF、OD、OP之间的等量关系,并加以证明; (3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长. 22.已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=. (1)求证:AM•MB=EM•MC; (2)求sin∠EOB的值; (3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是⊙O的切线. 23.如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,C

13、D交AE于点F,过C作CG∥AE交BA的延长线于点G. (1)求证:CG是⊙O的切线. (2)求证:AF=CF. (3)若∠EAB=30°,CF=2,求GA的长. 24.如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P. (1)求证:DE是⊙O的切线; (2)求tan∠ABE的值; (3)若OA=2,求线段AP的长. 25.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点

14、E,过点B作BF⊥CD于点F. (1)求证:DP∥AB; (2)试猜想线段AE,EF,BF之间有何数量关系,并加以证明; (3)若AC=6,BC=8,求线段PD的长. 26.如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P. (1)求证:PC=PG; (2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程; (3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED的长. 27.如图,AB,AC分别是半⊙O的直径和弦

15、OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F. (1)求证:PC是半⊙O的切线; (2)若∠CAB=30°,AB=10,求线段BF的长. 28.如图1,AB为⊙O的直径,直线CD切⊙O于点C,AD⊥CD于点D,交⊙O于点E. (1)求证:AC平分∠DAB; (2)若4AB=5AD,求证:AE=3DE; (3)如图2,在(2)的条件下,CF交⊙O于点F,若AB=10,∠ACF=45°,求CF的长. 29.已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相

16、交于点E. (1)如图1,EB=AD,求证:△ABE是等腰直角三角形; (2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由. 30.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D. (1)求证:∠PCA=∠ABC; (2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=,CF=5,求BE的长.   成都中考圆压轴题训练 参考答案   一.选择题(共15小题) 1.   ;2.   ;3.   ;4.   ;5.   ;6.   ;7.   ;8.   ;9.   ;10.   ;11.   ;12.   ;13.   ;14.   ;15.   ;   二.解答题(共15小题) 16.   ;17.   ;18.   ;19.   ;20.   ;21.   ;22.   ;23.   ;24.   ;25.   ;26.   ;27.   ;28.   ;29.   ;30.   ;   第14页(共14页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服