ImageVerifierCode 换一换
格式:PDF , 页数:12 ,大小:281.18KB ,
资源ID:1150088      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1150088.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初中数学函数知识点归纳(1).pdf)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学函数知识点归纳(1).pdf

1、初中函数知识1 函数知识点总结函数知识点总结(掌握函数的定义、性质和图像掌握函数的定义、性质和图像)平面直角坐标系平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)点 P(x,y),则 x0,y0;第二象限:(-,+)点 P(x,y),则 x0,y0;第三象限:(-,-)点 P(x,y),则 x0,y0;第四象限:(+,-)点 P(x,y),则 x0,y0;3、坐标轴上点的坐标特征:x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0,0)。两坐标轴的点不属于任何象限。4、点的对称特征:已

2、知点 P(m,n),关于 x 轴的对称点坐标是(m,-n),横坐标相同,纵坐标反号关于 y 轴的对称点坐标是(-m,n)纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n)横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于 x 轴的直线上的任意两点:纵坐标相等;平行于 y 轴的直线上的任意两点:横坐标相等。6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。第二、四象限角平分线上的点横、纵坐标互为相反数。7、点 P(x,y)的几何意义:初中函数知识2点 P(x,y)到 x 轴的距离为|y|,点 P(x,y)到 y 轴的距离为|x|。点 P(x,y)到

3、坐标原点的距离为22yx 8、两点之间的距离:X 轴上两点为 A A、B B|AB|AB|)0,(1x)0,(2x|12xx Y 轴上两点为 C C、D D|CD|CD|),0(1y),0(2y|12yy 已知 A、B AB|=AB|=),(11yx),(22yx212212)()(yyxx9、中点坐标公式:已知 A、B M 为 AB 的中点,则:M=(,),(11yx),(22yx212xx 212yy 10、点的平移特征:在平面直角坐标系中,将点(x,y)向右平移 a 个单位长度,可以得到对应点(x-a,y);将点(x,y)向左平移 a 个单位长度,可以得到对应点(x+a,y);将点(x,

4、y)向上平移 b 个单位长度,可以得到对应点(x,yb);将点(x,y)向下平移 b 个单位长度,可以得到对应点(x,yb)。注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。函数的基本知识函数的基本知识:基本概念基本概念1 1、变量:、变量:在一个变化过程中可以取不同数值的量。常量:常量:在一个变化过程中只能取同一数值的量。2 2、函数:、函数:一般的,在一个变化过程中,如果有两个变量 x 和 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把 x 称为自变量,把 y

5、称为因变量,y是 x 的函数。*判断 A 是否为 B 的函数,只要看 B 取值确定的时候,A 是否有唯一确定的值与之对应3、定义域和值域:定义域和值域:定义域:定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。值域:值域:一般的,一个函数的因变量所得的值的范围,叫做这个函数的值域。初中函数知识34 4、确定函数定义域的方法:、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况

6、相符合,使之有意义。5 5、函数的图像、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象6、函数解析式:函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7 7:增减性(单调性):增减性(单调性):增减性又叫单调性,分两种情况:单调增、单调减单调增:单调增:y 随 x 的增大而增大 单调减:单调减:y 随 x 的增大而减小 口诀:“同增异减”,注意:单调性只适用于单调区间,即有一个 X 只有唯一确定的 y 与之对应时。8 8、描点法画函数图形的一般步骤、描点法画函数图形的一般步骤第一

7、步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。9 9、函数的表示方法、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。初中函数知识4一次函数图象和性质一次函数图象和性质【知识梳理】

8、一、一次函数的基础知识一、一次函数的基础知识1 1、定义、定义:一般地,形如 y=kxb(k,b 是常数,k0),那么 y 叫做 x 的一次函数当 b=0 时,y=kxb 即 y=kx,称为正比倒函数,所以说正比例函数是一种特殊的一次函数.一次函数的一般形式:y=kx+b(k0)说明:k 不为零 x 指数为 1 b 取任意实数2 2、解析式、解析式:y=kx+b(k、b 是常数,k0)3 3、图像:、图像:一次函数 y=kx+b 的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直kb线 y=kx+b,4 4、增减性(单调性)、增减性(单调性):k0,y 随 x 的增大而增大(单调增

9、)(单调增);k0,y 随 x 的增大而增大;k0 时直线与 y 轴交于原点上方(即 y 轴的正半轴);当 b0 时,将直线 y=kx 的图象向上平移 b 个单位;口诀“正上”当 b0b0增减性(单调性):增减性(单调性):图象从左到右上升,y 随 x 的增大而增大,单调增经过第一、二、四象限不经过:第三象限经过第二、三、四象限不经过:第一象限经过第二、四象限不经过:第一、三象限k0,y 随 x 的增大而减小(单调减)(单调减);k0)【(h0)【(k0)【(h0)【(h0)【(k0)【(k0)和 y=(k0),在同一坐标系中的图象可能是(B )xk A B C D在一次函数 y=2x-1 的图象上,到两坐标轴距离相等的点有(B)A、1 个 B、2 个 C、3 个 D、无数个若点(-2,y1)、(-1,y2)、(1,y3)在反比例函数的图像上,xy1则下列结论中正确的是(D )A、y1y2y3 B、y1y2y1y3 D、y3y1y2已知一次函数y=(m2-4)x+1-m的图象在 y 轴上的截距与一次函数 y=(m2-2)x+m2-3 的图象在 y 轴上的截距互为相反数,则 m=_-1_。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服