ImageVerifierCode 换一换
格式:PPT , 页数:36 ,大小:992KB ,
资源ID:11402460      下载积分:12 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11402460.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(新的负荷预测方法数据挖掘.ppt)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新的负荷预测方法数据挖掘.ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,.,*,基于数据挖掘技术的短期负荷预测,清华大学电机系 何光宇,gyhe,166.111.60.146,1,.,提纲,1 介绍,1.1 基本概念,1.2 常用模型,1.3 存在问题,2 基于数据挖掘的新的负荷预测方法,2.1 负荷特性,2.2 气象因素对负荷影响分析,2.3 负荷预测系统简介,2.4 考虑气象因素的负荷预测方法,2.5 展望与提高,2,.,负荷预测分类:,长期负荷预测 (1年到数十年),中期负荷预测 (1月到1年),短期负荷预测,(1日到1周),超短期负荷预测(1小时以内),1.1 基本知识(1

2、),3,1.1 基本知识(2),负荷预测的主要原理,可知性原理,可能性原理,连续性原理,相似性原理,4,.,至在线信息发布,日预计负荷,负 荷 数 据,历史负荷数据库,历史天气及事件数据库,年预计负荷,月预计负荷,年交易计划,数据库,月交易计划,数据库,日交易计划,数据库,公用数据库,日购电计划,年购电计划,月购电计划,图1 年、月、日负荷预测及交易计划决策系统策系统,负 荷 预 测 引 擎,年交易计划,决策系统,月交易计划,决策系统,日交易计划,决策系统,公用数据库,管理系统,报 价 数 据,检 修 数 据,在线交易支持系统,5,.,回归预测模型,随机时间序列模型,灰色预测模型,神经元网络模

3、型,组合预测模型,1.2 常用模型,6,回归预测模型,影响负荷的因素是多种多样的,构造一个合适的,预测函数,是十分困难的,即使构造出了一个预测函数,也难以保证在一些影响因素不断变化的条件下仍能描述负荷变化的复杂规律。,1.2.1 回归预测模型,7,随机时间序列模型(ARIMA),在气候等因素变化不大时,体现了负荷随时间呈周期性变化的主要规律,预测效果良好;,但不能考虑各种不确定因素的影响,在随机因素变化较大或坏数据没有剔除的情况下,预测结果不甚理想。,1.2.2 随机时间序列模型,8,1.2.3 灰色预测模型,灰色预测模型,模型认为无规律的负荷数据列累加后,可生成指数增长规律的上升序列。,不能

4、体现短期负荷变化的周期性和随机性。,9,.,神经元网络模型(ANN),经训练的ANN是不透明的,ANN中的知识表示是高度分布化的,因此理想的信息处理过程非常困难。,神经网络存在训练时间长收敛慢的弱点。对于原始数据要求较高,必须进行坏数据处理。,1.2.4 神经元网络模型,10,.,组合预测模型,此法对于预测精度的改进是基于各种单一模型的预测结果。,各种单一模型在天气变化或出现重大事的特殊日,所产生的预测误差往往具有相同的趋势。对这些结果进行加权平均,所得的预测误差往往是大于预测精度最高的单一模型。,1.2.5 组合预测模型,11,.,1.3 问题和难点(1),负荷受各种非负荷因素的影响越来越大

5、非负荷因素很多,包括各种气象因素,如每天二十四点温度,每天二十四点降水量,舒适度,还有小水电等等。,这些非负荷因素同时作用于负荷,随着生产和生活水平的提高,负荷对非负荷因素的反应的灵敏度也会不断变化,负荷受非负荷因素影响规律也在不断变化,12,.,1.3 问题和难点(2),预测方法的选择,以往的做法是提供很多种方法供用户选择,应该为用户提供一种通用的方法,13,.,2.1 负荷特性,高增长率,年度增长率高,冬夏季增长率要明显高于全年平均增长,受各种非负荷因素影响越来越大,某省,2001,2003,年,14,:,00,负荷曲线,14,.,2.2 非负荷因素对负荷的影响,各种非负荷因素:气象、

6、季节、节假日、特殊事件等,对负荷有着较大影响,这其中,气象对负荷影响最大;在众多气象因素中,温度又是最重要的因素,下面进行简要说明,15,.,2.2非负荷因素对负荷的影响(1)-某时刻温度对该时刻负荷影响,2001年每日14:00温度与该时刻负荷关系,16,.,2.2非负荷因素对负荷的影响(2)-某时刻温度对该时刻负荷影响,2002年每日14:00温度与该时刻负荷关系,17,.,2.2非负荷因素对负荷的影响(3)-某时刻温度对该时刻负荷影响,2003年每日14:00温度与该时刻负荷关系,18,.,2.2非负荷因素对负荷的影响(4)多时刻温度对某时刻负荷影响,温度对负荷的影响相当复杂,而且存在一

7、定的,滞后性,在不同的时段,温度对负荷影响的滞后时间也大不相同。,决策树技术是数据挖掘重要的方法。该方法能从海量数据中,挖掘出众多因素对某一因素的影响规律,并按照影响强度将“知识”用树的方式表达出来。,19,.,2.2非负荷因素对负荷的影响(5)各种非负荷因素对某时刻负荷影响,当天5点温度,是否为周六日,8点温度,昨天17点温度,昨天20点温度,901121*x,965+273*x,2152+395*x,当晚23点温度,20,.,2.3 短期负荷预测系统简介(1),1 系统硬件结构,2 系统逻辑结构,3 基于B/S结构的一体化的负荷预测软件包,4 负荷分析与负荷建模工具,21,.,2.3 系统

8、介绍(1)-硬件结构,22,.,2.3 系统介绍(2)-软件结构,负荷数据库与气象数据库,持久层(基于web service),负荷预测引擎(基于web service),显示层,与外部系统接口,(,基于IEC61970,),23,.,2.3 系统介绍(3)-基于B/S结构,基于B/S结构的一体化的负荷预测软件包,基于B/S结构,应用程序在浏览器上运行,客户端零安装、零维护,强安全性。有IP地址校验功能,只有用户名、密码和IP地址都符合的用户才能使用本系统。,智能、稳定、灵活的外部数据读入。,预测结果便于修改,以体现用户的专家知识。,用户在家中也可使用本系统,24,.,2.3 系统介绍(4)-

9、预测,25,.,2.4 考虑气象因素的负荷预测(1),国内外负荷预测方法概述,经典预测方法,多元线性回归,时间序列方法,状态空间及卡尔曼滤波分析法,指数平滑法,现代预测方法,专家系统法,人工神经网络法,模糊预测法,26,.,2.4 考虑气象因素的负荷预测(2),节假日算法,外推插值算法,正常日算法,决策树技术与时间序列相结合的算法,27,.,2.4.1 节假日算法简介,节假日负荷具有突变性,且样本数较少,各年的节假日负荷具有很强的相似性,采用外推差值算法进行预测,上海市,2000,2002,年五一期间负荷数据,28,.,2.4.2 正常日算法,决策树技术与时间序列技术相结合,决策树技术依据各种

10、非负荷因素,进行分类,在此基础上将负荷序列转变成平稳的时间序列,利用时间序列技术,预测负荷,考虑预测日的各种非负荷因素,利用“知识库”对预测结果进行修正,29,.,2.4.2.1 决策树技术简介(1),决策树学习是以实例为基础的归纳学习算法。,着眼于从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。,从根到叶节点的一条路径就对应着一条合取规则,整棵决策树就对应着一组析取表达式规则。,30,.,2.4.2.1 决策树技术简介(2),决策树算法:树的生长算法和剪枝算法,树的生长:利用训练样本集,完成决策树的建立过程。,剪枝:利用检验样本集,除去树中不合理的过多的分支,对形成的决策树进行优

11、化。,决策树技术:从海量数据中挖掘“知识”,目前负荷预测难点在于影响负荷变化的因素较多,以至于无法精确分析各个变量对负荷的具体影响。,决策树技术利用信息论的知识,自动查找对负荷影响较大的数据并对原有数据进行分类,可以有效的处理大数据量的问题,31,.,2.4.2.1 决策树技术简介(3),32,.,2.4.2.2 时间序列技术(1),时间序列法是20年代后期出现的一种预测方法,在60年代后期BoxJenkins提出一套比较完善的建模方法后迅速发展。也是在负荷预测中应用最为广泛的方法。,时间序列方法将数据看成是一串随时间变化的数据序列,这种序列通常被称为“时间序列”或“随机序列”。而负荷序列具备

12、了时间序列的全部特性。,时间序列研究预测对象自身变化过程及发展趋势,当序列平稳的情况下,可以取得很好的预测效果。序列不平稳时,直接应用效果较差。,33,.,2.4.2.2 时间序列技术(2)负荷序列的平稳化,实际负荷序列,非平稳,平滑处理后的负荷序列,平稳,34,.,2.4.3 气象预报误差对负荷预测的影响,天气预报的准确程度对负荷预测的准确程度有很大的影响,例1:,2003-7-17,最高温度(33.6,9.70%;38.4 2.73),2003-7-22,上午八点温度(27.4,8.44%;30.6,2.4%),2003.7月采用历史气象数据的平均日均方根误差为2.96%,采用预测气象数据的平均日均方根误差为3.75%。,总的来看,在气象预报不准确的情况下,提高负荷预测精度较为困难。,35,.,谢谢大家!,36,.,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服