ImageVerifierCode 换一换
格式:PPT , 页数:22 ,大小:1,023.50KB ,
资源ID:11333295      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11333295.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(简单线性规划问题(公开课)优秀PPT.ppt)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

简单线性规划问题(公开课)优秀PPT.ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,授课教师:程琬婷,2011,年,10,月,11,日,简单线性规划问题,(复习课),1,二元一次不等,式与平面区域,复习回顾(一),2,2.,包括边界的区域将边界画成,实线,,不包括边界的区域将边界画成,虚线,.,1.,画二元一次不等式表示的平面区域,常采用,“,直线定界,特殊点定域,”,的方法,当边界不过原点时,常把原点作为特殊点,.,3.,不等式,Ax,By,C,0,表示的平面区域位置与,A,、,B,的符号有关(,同为正,异为负,),相关理论不要求掌握,.,3,4x,3,y,12,理论迁移(一),例1:画

2、出下列不等式表示的平面区域.,(1)x4y4;(2)4x3y12.,x,4,y,4,x,y,O,x,y,O,1,4,3,4,4,二元一次不等式,组与平面区域,复习回顾(二),5,1.,不等式组表示的平面区域是各个不等式所表示的平面区域的交集,即各个不等式所表示的平面区域的公共部分,.,2.,不等式组表示的平面区域可能是一个多边形,也可能是一个无界区域,还可能由几个子区域合成,.,若不等式组的解集为空集,则它不表示任何区域,.,6,x,y,O,6x,5y,22,4x,y,10,例,2.,请画出下列不等式组表示的平面区域,.,理论迁移(二),7,2x,y,15,x,3y,27,x,2y,18,O,

3、x,y,例,3.,如何画出如右不等式组表示的平面区域?,8,简单线性规划问题,复习回顾(三),9,设,z=2x+y,求满足,时,求,z,的最大值和最小值,.,线性目标函数,线性约束条件,线性规划问题,任何一个满足不等式组的(,x,y,),可行解,可行域,所有的,最优解,目标函数所表示的几何意义,在,y,轴上的截距或其相反数。,10,11,解线性规划问题的步骤:,2.,画:,画出线性约束条件所表示的可行域;,3.,移:,在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点,且纵截距最大或最小的直线;,4.,求:,通过解方程组求出最优解;,5.,答:,作出答案。,1.,找,:,找

4、出线性约束条件、目标函数;,11,,求,z,的最大值和最小值,.,y,X,0,1,2,3,4,5,6,7,1,2,3,4,5,x-4y+3=0,3x+5y-25=0,x=1,例,4.,设z=2x,y,变量x、y满足下列条件,X-4y -3,3X+5y,25,X 1,理论迁移(三),12,5,y,X,0,1,2,3,4,6,7,1,2,3,4,5,x-4y+3=0,3x+5y-25=0,x=1,,求,z,的最大值和最小值,.,2x-y=0,B,A,C,代入点,B,得最大为,8,,代入点,A,得,最小值为,.,3X+5y 25,例,4.,设z=2x,y,变量x、y满足下列条件,X-4y -3,X

5、1,A,(,1,,,4.4,),B,(,5,,,2,),C,(,1,1,),13,例,5.,已知,,,z=2x+y,,,求,z,的最大值和最小值。,x,y,1,2,3,4,5,6,7,O,-1,-1,1,2,3,4,5,6,B,A,C,x=1,x-4y+3=0,3x+5y-25=0,解:不等式组表示的平 面区域如图所示:,作斜率为,-2,的直线,平移,使之与平面区域有公共点,,所以,,A(5,2),B(1,1),过,A(5,2),时,,z,的值最大,,的值最小,当,过,B(1,1),时,,由图可知,当,14,分析:令目标函数,z,为,0,,,作直线,平移,使之与可行域有交点。,最小截距为过,A

6、5,2),的直线,注意:此题,y,的系数为负,当直线取最大截距时,代入点,C,,,则,z,有最小值,同理,当直线取最小截距时,代入点,A,,则,z,有最大值,y,1,2,3,4,5,6,7,O,-1,-1,1,2,3,4,5,6,x,3x+5y-25=0,x=1,B,A,C,x-4y+3=0,最大截距为过,的直线,变题:,上例若改为求,z=x-2y,的最大值、最小值呢?,15,归纳小结,1.,在线性约束条件下求目标函数的最大值或最小值,是一种数形结合的数学思想,它将目标函数的最值问题转化为动直线在,y,轴上的截距的最值问题来解决,.,2.,对于直线,l,:,z,Ax,By,,若,B,0,,则

7、当直线,l,在,y,轴上的截距最大,(,小,),时,,z,取最大,(,小,),值;若,B,0,,则当直线,l,在,y,轴上的截距最大,(,小,),时,,z,取最小,(,大,),值,.,16,线性规划的,实际应用,复习回顾(四),17,实际问题,线性规划问题,寻找约束条件,建立目标函数,列表,设立变量,转化,1.,约束条件要写全,;,3.,解题格式要规范,.,2.,作图要准确,计算也要准确,;,注意,:,18,例,6.,咖啡馆配制两种饮料甲种饮料每杯含奶粉,9g,、咖啡,4g,、糖,3g,乙种饮料每杯含奶粉,4g,,咖啡,5g,,糖,10g,已知每天原料的使用限额为奶粉,3600g,,咖啡,20

8、00g,,糖,3000g,如果甲种饮料每杯能获利,0.7,元,乙种饮料每杯能获利,1.2,元,每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大,?,解:将已知数据列为下表:,原,料,每配制,1,杯饮料消耗的原料,奶粉,(g),咖啡,(g),糖,(g),甲种饮料,乙种饮料,9,4,3,4,5,10,原 料限 额,3600,2000,3000,利 润,(,元,),0.7,1.2,x,y,设每天应配制甲种饮料,x,杯,乙种饮料,y,杯,则,目标函数为:,z=0.7x+1.2y,理论迁移(四),19,解,:,设每天应配制甲种饮料,x,杯,乙种饮料,y,杯,则,作出可行域:,目

9、标函数为:,z=0.7x+1.2y,作直线,l:0.7x+1.2y=0,,,把直线,l,向右上方平移至,l,1,的位置时,,当直线经过可行域上的点,C,时,,截距最大,此时,,z=0.7x+1.2y,取最大值,解方程组,得点,C,的坐标为(,200,,,240,),_,0,_,9,x,+,4,y,=,3600,_,C,(,200,240,),_,4,x,+,5,y,=,2000,_,3,x,+,10,y,=,3000,_,7,x,+,12,y,=,0,_,400,_,400,_,300,_,500,_,1000,_,900,_,0,_,x,_,y,目标函数为:,z=0.7x+1.2y,答,:,每天配制甲种饮料,200,杯,乙种饮料,240,杯可获取最大利润,.,20,小结,:,实际问题,列表,设出变量,寻找约束条件,建立目标函数,转化,建模,线性规划问题,图解法,最优解,三个转化,四个步骤,作答,调整,最优整数解,平移找解法,调整优值法,常用方法,目标函数,距离,斜率等,21,谢谢指导!,22,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服