ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:63.55KB ,
资源ID:11326789      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11326789.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(三角形三条高线交于一点的六种证明方法.doc)为本站上传会员【知****运】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

三角形三条高线交于一点的六种证明方法.doc

1、三角形三条高线交于一点的证明 证法一:运用同一法证三条高两两相交的交点是同一点。 已知:△ABC的两条高BE、CF相交于点O,第三条高AD交高BD于点Q,交高CF于点P。 求证:P、Q、O三点重合 证明:如图,∵BE⊥AC,CF⊥AB ∴∠AEB = ∠AFC = 90° 又∵∠BAE = ∠CAF ∴△ABE ∽ △ACF ∴, 即AB·AF = AC·AE 又∵AD⊥BC ∴△AEQ ∽ △ADC,△AFP ∽ △ADB ∴, 即AC·AE = AD·AQ,AB·AF = AD·AP ∵AB·AF

2、 AC·AE,AC·AE = AD·AQ,AB·AF = AD·AP ∴AD·AQ = AD·AP ∴AQ = AP ∵点Q、P都在线段AD上 ∴点Q、P重合 ∴AD与BE、AD与CF交于同一点 ∵两条不平行的直线只有一个交点 ∴BE与CF也交于此点 ∴点Q、P、O重合。 证法二:连结一顶点和两高交点的线垂直于第三边,运用四点共圆性质。 已知:△ABC的两条高AD、BE相交于点O,第三条高CF交高AB于点F,连结CO交AB于点F。 求证:CF⊥AB。 证明:∵AD⊥BC于D,BE⊥AC于E ∴A、B、D、E四点共圆 ∴∠1=∠ABE 同理∠2=∠1

3、 ∴∠2=∠ABE ∵∠ABE+∠BAC=90°, ∴∠2+∠BAC=90° 即CF⊥AB。 注:证法一和证法二是证明共点线的常用方法。 证法三:证明两条高的交点在第三条高线上,建立直角坐标系运用代数方法证明。 证明:如图6,以直线BC为x轴,高AD为y轴,建立直角坐标系,设A(0 , a) , B(b , 0) , C(c , 0),由两条直线垂直的条件 x C D O y A B F E 则三条高的直线方程分别为: 解(2)和(3)得 ∴ 这说明BE和CF得交点在A

4、D上,所以三角形的三条高相交于一点。 注:有时候考虑直角坐标系这一有力的数形结合工具可以有效地解决问题。 证法四:转化为证明另一个三角形的三条中垂线(或中线)交于一点。 已知:AD、BE、CF是△ABC的三条高。 求证:AD、BE、CF相交于一点。 证明:过点A、B、C分别作BC、AC、AB的平行线ML、MN、NL ∵AM∥BC,MB∥AC ∴四边形AMBC是平行四边形 ∴AM=BC 同理,AL=BC ∴AM=AL ∵AD⊥ML ∴AD是ML的垂直平

5、分线 同理,BE、CF分别是MN、NL的垂直平分线 而三角形的三条垂直平分线相交于一点 ∴AD、BE、CF相交于一点。 注:三角形的三条中线(可中垂线、角平分线)相交于一点,这事实学生容易理解,也不难证明,把证明三角形的三条垂线相交于一点的问题转化为另一三角形的三条中线(中垂线)相交于一点,这种化陌生为熟悉、化难为易的转化方法必须让学生理解掌握。 证法五:运用锡瓦(Ceva)定理证明。 已知:AD、BE、CF是△ABC的三条高。 求证:AD、BE、CF相交于一点。 证明:如图,∵AD⊥BC于E,BE⊥AC于E ∴△ABD ∽ △CBF ∴

6、 (1) 同理,由△ADC ∽ △BEC得 , (2) 由△AFC ∽ △AEB (3) 三式相乘得 即 ∴AD、BE、CF相交于一点。 注:锡瓦定理是证明共点线的有力工具,虽然中学不作要求,但对于学有余力的学生不妨引导他们自己研究,激发他们的学习兴趣。 锡瓦定理可以用梅涅劳(Menelaus)定理证明,而梅涅劳定理可以由平行线分线段成比例定理轻松得到。在适当情况下适当的启发有利于学生思维的扩散,有利于培养学生的创新能力。 证法六 设ΔABC,三条高线为AD、BE、CF,AD与BE交于H,连接CF。向量HA=向量a,向量HB=向量b,向量HC=向量c。  因为AD⊥BC,BE⊥AC,  所以向量HA·向量BC=0,向量HB·向量CA=0,  即向量a·(向量c-向量b)=0,  向量b·(向量a-向量c)=0,  亦即  向量a·向量c-向量a·向量b=0  向量b·向量a-向量b·向量c=0  两式相加得  向量c·(向量a-向量b)=0  即向量HC·向量BA=0  故CH⊥AB,C、F、H共线,AD、BE、CF交于同一点H 5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服