ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:759.01KB ,
资源ID:11319498      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11319498.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(圆与方程知识点整理.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

圆与方程知识点整理.doc

1、关于圆与方程的知识点整理 一、标准方程 1.求标准方程的方法——关键是求出圆心和半径 ①待定系数:往往已知圆上三点坐标,例如教材例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 过原点 圆心在轴上

2、 圆心在轴上 圆心在轴上且过原点 圆心在轴上且过原点 与轴相切 与轴相切 与两坐标轴都相切 二、一般方程 1.表示圆方程则 2.求圆的一般方程一般可采用待定系数法:如教材例4 3.常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心

3、的距离与半径的大小关系 点在圆内;点在圆上;点在圆外 2.涉及最值: (1)圆外一点,圆上一动点,讨论的最值 (2)圆内一点,圆上一动点,讨论的最值 思考:过此点作最短的弦?(此弦垂直) 四、直线与圆的位置关系 1.判断方法(为圆心到直线的距离) (1)相离没有公共点 (2)相切只有一个公共点 (3)相交有两个公共点 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆

4、相切 (1)知识要点 ①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线与圆相切意味着什么? 圆心到直线的距离恰好等于半径 (2)常见题型——求过定点的切线方程 ①切线条数 点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点 i)点在圆外 如定点,圆:,[] 第一步:设切线方程 第二步:通过,从而得到切线方程 特别注意:以上解题步骤仅对存在有效,当不存在时,应补上——千万不要漏了! 如:过点作圆的切线,求切线方程. 答案:和 ii)点在圆上 1) 若点在圆上,则切线方程为 会在选择题及填

5、空题中运用,但一定要看清题目. 2) 若点在圆上,则切线方程为 碰到一般方程则可先将一般方程标准化,然后运用上述结果. 由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数. ③求切线长:利用基本图形, 求切点坐标:利用两个关系列出两个方程 3.直线与圆相交 (1)求弦长及弦长的应用问题 垂径定理及勾股定理——常用 弦长公式:(暂作了解,无需掌握) (2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内. (3)关于点的个数问题 例:若圆上有且仅有两个点到直线的距离为1,则半径的

6、取值范围是_________________. 答案: 4.直线与圆相离 会对直线与圆相离作出判断(特别是涉及一些参数时) 五、对称问题 1.若圆,关于直线,则实数的值为____. 答案:3(注意:时,,故舍去) 变式:已知点是圆:上任意一点,点关于直线的对称点在圆上,则实数_________. 2.圆关于直线对称的曲线方程是________________. 变式:已知圆:与圆:关于直线对称,则直线的方程为_______________. 3.圆关于点对称的曲线方程是__________________. 4.已知直线:与圆:,问:是否存在实数使自发出的光线被直线

7、反射后与圆相切于点?若存在,求出的值;若不存在,试说明理由. 六、最值问题 方法主要有三种:(1)数形结合;(2)代换;(3)参数方程 1.已知实数,满足方程,求: (1)的最大值和最小值;——看作斜率 (2)的最小值;——截距(线性规划) (3)的最大值和最小值.——两点间的距离的平方 2.已知中,,,,点是内切圆上一点,求以,,为直径的三个圆面积之和的最大值和最小值. 数形结合和参数方程两种方法均可! 3.设为圆上的任一点,欲使不等式恒成立,则的取值范围是____________. 答案:(数形结合和参数方程两种方法均可!) 七、圆的参数方程 ,为参数 ,为参数

8、 八、相关应用 1.若直线(,),始终平分圆的周长,则的取值范围是______________. 2.已知圆:,问:是否存在斜率为1的直线,使被圆截得的弦为,以为直径的圆经过原点,若存在,写出直线的方程,若不存在,说明理由. 提示:或弦长公式. 答案:或 3.已知圆:,点,,设点是圆上的动点,,求的最值及对应的点坐标. 4.已知圆:,直线:() (1)证明:不论取什么值,直线与圆均有两个交点; (2)求其中弦长最短的直线方程. 5.若直线与曲线恰有一个公共点,则的取值范围. 6.已知圆与直线交于,两点,为坐标原点,问:是否存在实数,使,若存在,求出的值;若不存在,说明理

9、由. 九、圆与圆的位置关系 1.判断方法:几何法(为圆心距) (1)外离 (2)外切 (3)相交 (4)内切 (5)内含 2.两圆公共弦所在直线方程 圆:,圆:, 则为两相交圆公共弦方程. 补充说明: 若与相切,则表示其中一条公切线方程; 若与相离,则表示连心线的中垂线方程. 3圆系问题 (1)过两圆:和:交点的圆系方程为() 说明:1)上述圆系不包括;2)当时,表示过两圆交点的直线方程(公共弦) (2)过直线与圆交点的圆系方程为 (3)有关圆系的简单应用 (4)两圆公切线的条数问题 ①相内切时,有一条公切线;②相外切时,有三条公

10、切线;③相交时,有两条公切线;④相离时,有四条公切线 十、轨迹方程 (1)定义法(圆的定义):略 (2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式——轨迹方程. 例:过圆外一点作圆的割线,求割线被圆截得的弦的中点的轨迹方程. 分析: (3)相关点法(平移转换法):一点随另一点的变动而变动 动点 主动点 特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动. 例1.如图,已知定点,点是圆上的动点,的平分线交于,当点在圆上移动时,求动点的轨迹方程. 分析:角平分线定理和定比分点公式. 例2.已知圆:,点,、是圆上的两个动点,、、呈逆时针方向排列,且,求的重心的轨迹方程. 法1:,为定长且等于 设,则 取的中点为, , (1) , 故由(1)得: 法2:(参数法) 设,由,则 设,则 ,由得: 参数法的本质是将动点坐标中的和都用第三个变量(即参数)表示,通过消参得到动点轨迹方程,通过参数的范围得出,的范围. (4)求轨迹方程常用到得知识 ①重心,②中点, ③内角平分线定理: ④定比分点公式:,则, ⑤韦达定理.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服