1、 高三数学第二轮专题讲座复习:关于不等式证明的常用方法高考要求 不等式的证明,方法灵活多样,它可以和很多内容结合 高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本节着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力 重难点归纳 1 不等式证明常用的方法有 比较法、综合法和分析法,它们是证明不等式的最基本的方法 (1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述 如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证 (2)综合法是由
2、因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野 2 不等式证明还有一些常用的方法 换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等 换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性 放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查 有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法 证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,
3、并掌握相应的步骤、技巧和语言特点 典型题例示范讲解 例1证明不等式(n∈N*) 命题意图 本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力 知识依托 本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等 错解分析 此题易出现下列放缩错误 这样只注重形式的统一,而忽略大小关系的错误也是经常发生的 技巧与方法 本题证法一采用数学归纳法从n=k到n=k+1的过渡采用了放缩法 证法二先放缩,后裂项,有的放矢,直达目标 而证法三运用函数思想,借助单调性,独具匠心,
4、发人深省 证法一 (1)当n等于1时,不等式左端等于1,右端等于2,所以不等式成立 (2)假设n=k(k≥1)时,不等式成立,即1+<2, ∴当n=k+1时,不等式成立 综合(1)、(2)得 当n∈N*时,都有1+<2 另从k到k+1时的证明还有下列证法 证法二 对任意k∈N*,都有 例2求使≤a(x>0,y>0)恒成立的a的最小值 命题意图 本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力 知识依托 该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来
5、等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值 错解分析 本题解法三利用三角换元后确定a的取值范围,此时我们习惯是将x、y与cosθ、sinθ来对应进行换元,即令=cosθ,=sinθ(0<θ<),这样也得a≥sinθ+cosθ,但是这种换元是错误的 其原因是 (1)缩小了x、y的范围 (2)这样换元相当于本题又增加了“x、y=1”这样一个条件,显然这是不对的 技巧与方法 除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a满足不等关系,a≥f(x),则amin=f(x)max 若 a≤f(x),则amax=f(x)min,利用这一
6、基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题 还有三角换元法求最值用的恰当好处,可以把原问题转化 解法一 由于a的值为正数,将已知不等式两边平方,得 x+y+2≤a2(x+y),即2≤(a2-1)(x+y), ① ∴x,y>0,∴x+y≥2, ② 当且仅当x=y时,②中有等号成立 比较①、②得a的最小值满足a2-1=1, ∴a2=2,a= (因a>0),∴a的最小值是 解法二 设 ∵x>0,y>0,∴x+y≥2 (当x=y时“=”成立), ∴≤1,的最大值是1 从而可知,u的最大值为, 又由已知,得a
7、≥u,∴a的最小值为 例3已知a>0,b>0,且a+b=1 求证 (a+)(b+)≥ 证法一 (分析综合法)欲证原式,即证4(ab)2+4(a2+b2)-25ab+4≥0, 即证4(ab)2-33(ab)+8≥0,即证ab≤或ab≥8∵a>0,b>0,a+b=1, ∴ab≥8不可能成立∵1=a+b≥2,∴ab≤,从而得证 证法二 (均值代换法) 设a=+t1,b=+t2 ∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<,|t2|< 显然当且仅当t=0,即a=b=时,等号成立 证法三 (比较法)∵a+b=1,a>0,b>0,∴a+b≥2
8、∴ab≤ 学生巩固练习 1 已知x、y是正变数,a、b是正常数,且=1,x+y的最小值为 _ 2 设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是_________ 3 若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m、n、p、q的大小顺序是__________ 4 已知a,b,c为正实数,a+b+c=1 求证 (1)a2+b2+c2≥ (2)≤6 参考答案 1 解析 令=cos2θ,=sin2θ,则x=asec2θ,y=bcsc2θ, ∴x+y=asec2θ+bcsc
9、2θ=a+b+atan2θ+bcot2θ≥a+b+2 答案 a+b+2 2 解析 由0≤|a-d|<|b-c|(a-d)2<(b-c)2(a+b)2-4ad<(b+c)2-4bc ∵a+d=b+c,∴-4ad<-4bc,故ad>bc 答案 ad>bc 3 解析 把p、q看成变量,则m<p<n,m<q<n 答案 m<p<q<n 4 (1)证法一 a2+b2+c2-=(3a2+3b2+3c2-1) =[3a2+3b2+3c2-(a+b+c)2] =[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc] =[(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥ 证法二 ∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤a2+b2+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1 ∴a2+b2+c2≥ ∴原不等式成立 证法二 ∴≤<6∴原不等式成立 4






