ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:43KB ,
资源ID:11304136      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11304136.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(无私奉献高考复习中应重视数学思想方法的渗透.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

无私奉献高考复习中应重视数学思想方法的渗透.doc

1、词·清平乐 禁庭春昼,莺羽披新绣。 百草巧求花下斗,只赌珠玑满斗。 日晚却理残妆,御前闲舞霓裳。谁道腰肢窈窕,折旋笑得君王。 高考复习中应重视数学思想方法的渗透 林立 数学思想方法是数学科的灵魂,它反映在数学教学内容里面,体现在解决问题的过程之中,它是将知识转化为能力的桥梁。只有运用数学思想方法,才能把数学知识和技能转化为分析问题和解决问题的能力。近二年高考试题非常重视对学生掌握数学思想方法的考查。在高考复习中如何渗透数学思想方法,提高学生的数学素质和能力,本人做了一些尝试,现总结如下.     一.渗透数学思想方法进行基础知识复习,丰富基础知识内涵,优化知识结构。    

2、 1.在总结基础知识的复习时,应注意揭示、总结其中蕴含的数学思想方法。     如:在复习指数函数和对数函数的性质时,应注意揭示底数a分为a>1和0

3、可以把方程和不等式分别当成函数值等于零,大于或小于零的情况,通过联想函数图像,可提供方程、不等式解的几何意义,运用转化和数形结合的思想,使孤立的三块知识相互联系、相互转化。深化对知识的理解和整合,优化了学生的认知结构。     二.在解题教学中渗透数学思想方法,提高学生的数学素质和能力。     解题的过程实质上是在化归思想的指导下,合理联想提取相关知识,调用一定数学思想方法加工、处理题设条件和知识,逐步缩小题设与题断间的差异过程。运用数学思想方法分析、解决问题,可开拓学生的思维空间,优化解题策略。如:     例1.求函数y=的最小值.                      

4、                分析:考察式子特点,从代数的角度求解,学生的思维受阻,这时利用数形结合为转化手段,引导学生探索函数背后的几何背景,巧用两点间距离公式模型,把问题转化为:     =     令A(0,1),B(2,2),P(x,0),则问题转化为在X轴上探求一点P,使|PA|+|PB|有最小值.如图,由于A、B在X轴同侧,故取点A关于X轴的对称点,当P在BC上时有(|PA|+|PB|)min=     通过渗透数形转化思想,激活了学生的思维,培养了学生构建数学模型的能力。              例2. 设     分析:本题若直接求解,无从下手

5、若能利用特殊与一般相互转化的方法,引导学生观察式子的数量特征: ,将问题转化为研究函数的结构特征,得出这个一般性结论后易于求解.从特殊到一般相互转化思想方法的渗透,使学生的思维豁然开朗。     例3.如图(1)有面积关系:,则由图(2)有           .              分析:本题可引导学生从平面几何入手,通过类比联想,把平面问题类比得出空间中类似的结论,,并引导学生给出证明。观察归纳、类比猜想的运用,使学生找到了解决问题的新途径。     例4.若不等式 ,对恒成立,求X的取值范围。     分析:学生因思维定势常把原不等式视为关于lgx的二次不等

6、式,用分类讨论解答,过程相当繁杂,如果能引导学生注意lgx与m的关系,适当渗透常量与变量的转化思想,把m变为主元,lgx变为参数,则原不等式可转化为关于m的一元一次不等式问题,通过渗透函数思想,引导学生联想函数、方程、不等式的相互关系,构造函数,把问题转化为常规问题:,简单易解。     总之,在解题教学中适当渗透数学思想方法,开拓了学生的思维空间,优化了学生的思维品质,提高了学生的解题能力。     三.专题讲座,激发提升对数学思想方法的认识,提高对数学思想方法的驾驭能力。     数学知识本身具有系统性,数学思想方法也具有系统性,对它的学习和渗透是一个循序渐进、螺旋上升的过程。

7、在进行高考第二轮复习时,可以有目的地开设数学思想方法的专题复习讲座,以高中数学中常用的数学思想方法(如:数形结合、分类讨论、函数与方程、转化与化归)为主线,把中学数学中的基础知识有机地串连起来,让学生深刻领悟数学思想方法在数学学科中的支撑和统帅作用,进一步完善学生的认知结构,提高学生的数学能力。比如以函数思想为主线,它可以串连代数、三角、解析几何、以及微积分初步的大部分知识:方程可以看作函数值为零的特例;不等式可以看作两个函数值的大小比较;三角可以看作一类特殊的函数(三角函数);解几的曲线方程可以看作隐函数,曲线可视为函数的图形;微积分中的导数可作为研究函数性质的主要工具。在化归思想的指导下,

8、能使我们更深刻地理解化归变换的策略:比如指数、对数的高级运算转化为代数的低级运算;在方程中,三元、二元化为一元,分式方程化为整式方程;在立几中常将空间图形化为平面图形,复杂图形化为简单图形;解几中常将几何问题化归为代数问题研究。通过思想方法的专题复习,实现了知识、方法和数学思想的大整合,提高了学生分析问题、解决问题的综合能力。     综上所述,在高考数学复习过程中重视数学思想方法的渗透,可以深化学生对基础知识的理解,进一步完善学生的知识结构,优化思维品质,提高学生分析问题,解决问题能力,提高学生的数学素养。     参考文献:     于浩:《中学数学创新教法》,北京,学苑出版社  2001     唐国庆:《高考数学高分策略》,湖南教育出版社 2005.8 

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服