ImageVerifierCode 换一换
格式:DOC , 页数:27 ,大小:438.87KB ,
资源ID:11251970      下载积分:3 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11251970.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(初中数学北师大版九年级(下)期末测试卷1.doc)为本站上传会员【鱼**】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学北师大版九年级(下)期末测试卷1.doc

1、 期末测试(一)   一.选择题(共12小题) 1.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是(  ) A. B. C. D. 2.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是(  ) A.△ABC是等腰三角形 B.△ABC是等腰直角三角形 C.△ABC是直角三角形 D.△ABC是一般锐角三角形 3.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=(  ) A. B. C. D. 4.如图,为了测量河岸A,B两点的距离,在与A

2、B垂直的方向上取点C,测得AC=a,∠ABC=α,那么AB等于(  ) A.a•sinα B.a•cosα C.a•tanα D. 5.下列函数中,是二次函数的有(  ) ①y=1﹣x2②y=③y=x(1﹣x)④y=(1﹣2x)(1+2x) A.1个 B.2个 C.3个 D.4个 6.抛物线y=2(x﹣3)2+4顶点坐标是(  ) A.(3,4) B.(﹣3,4) C.(3,﹣4) D.(2,4) 7.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是(  ) A. B. C.或 D.或 8.已知二次函

3、数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为(  ) A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+1 9.若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为(  ) A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=0 10.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是(  ) A.AD=2OB B.CE=EO C.∠OCE=40° D

4、.∠BOC=2∠BAD 11.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于(  ) A.180°﹣2α B.2α C.90°+α D.90°﹣α 12.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是(  ) A.(2,3) B.(3,2) C.(1,3) D.(3,1) 二、填空题 13.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于   . 14.抛物线y=(x﹣2)2﹣3的顶点坐标是   . 15.如

5、图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为   . 16.如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=   °. 三、解答题 17.王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?

6、请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2) 18.随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米. (1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度的多少? 19.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,

7、分别交AC,AB于点E,F. (1)试判断直线BC与⊙O的位置关系,并说明理由; (2)若BD=2,BF=2,求阴影部分的面积(结果保留π). 20.如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF. (1)求证:AD是⊙O的切线; (2)若⊙O的半径为5,CE=2,求EF的长. 21.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD. (1)求证:EB=ED. (2)若AO=6,求的长.

8、 22.如图,已知等腰直角三角形ABC,∠ACB=90°,D是斜边AB的中点,且AC=BC=16分米,以点B为圆心,BD为半径画弧,交BC于点F,以点C为圆心,CD为半径画弧,分别交AB、BC于点E、G.求阴影部分的面积. 参考答案与试题解析   一.选择题(共12小题) 1.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是(  ) A. B. C. D. 【考点】T1:锐角三角函数的定义. 【专题】选择题 【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可

9、得答案. 【解答】解:A、在△BCD中,sinα=,故A正确; B、在Rt△ABC中sinα=,故B正确; C、在Rt△ACD中,sinα=,故C正确; D、在Rt△ACD中,cosα=,故D错误; 故选:D. 【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.   2.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是(  ) A.△ABC是等腰三角形 B.△ABC是等腰直角三角形 C.△ABC是直角三角形 D.△ABC是一般锐角三角形 【考点】T5:特殊角的三角函数值. 【专题】选择题

10、 【分析】先根据特殊角的三角函数值求出∠A,∠B的值,再根据三角形内角和定理求出∠C即可判断. 【解答】解:∵tanA=1,sinB=, ∴∠A=45°,∠B=45°. 又∵三角形内角和为180°, ∴∠C=90°. ∴△ABC是等腰直角三角形. 故选B. 【点评】解答此题的关键是熟记特殊角的三角函数值,三角形内角和定理及等腰三角形的判定.   3.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=(  ) A. B. C. D. 【考点】T7:解直角三角形;D5:坐标与图形性质. 【专题】选择题 【分析】利用

11、待定系数法求得直线AB的解析式,然后求得B的坐标,进而利用正切函数定义求解. 【解答】解:设直线AB的解析式是y=kx+b, 根据题意得:, 解得, 则直线AB的解析式是y=﹣x+2. 在y=﹣x+2中令y=0,解得x=. 则B的坐标是(,0),即OB=. 则tan∠OAB===. 故选B. 【点评】本题考查了三角函数的定义以及待定系数法求函数解析式,正确求得B的坐标是关键.   4.如图,为了测量河岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ABC=α,那么AB等于(  ) A.a•sinα B.a•cosα C.a•tanα D. 【考点】

12、T8:解直角三角形的应用. 【专题】选择题 【分析】根据已知角的正切值表示即可. 【解答】解:∵AC=a,∠ABC=α,在直角△ABC中tanα=, ∴AB=. 故选:D. 【点评】此题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.   5.下列函数中,是二次函数的有(  ) ①y=1﹣x2②y=③y=x(1﹣x)④y=(1﹣2x)(1+2x) A.1个 B.2个 C.3个 D.4个 【考点】H1:二次函数的定义. 【专题】选择题 【分析】把关系式整理成一般形式,根据二次函数的定义判定即可解答. 【解答】解:①y=1﹣x2=﹣

13、x2+1,是二次函数; ②y=,分母中含有自变量,不是二次函数; ③y=x(1﹣x)=﹣x2+x,是二次函数; ④y=(1﹣2x)(1+2x)=﹣4x2+1,是二次函数. 二次函数共三个,故选C. 【点评】本题考查二次函数的定义.   6.抛物线y=2(x﹣3)2+4顶点坐标是(  ) A.(3,4) B.(﹣3,4) C.(3,﹣4) D.(2,4) 【考点】H3:二次函数的性质. 【专题】选择题 【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标. 【解答】解:y=2(x﹣3)2+4是抛物线的顶点式, 根据顶点式的坐标特点可知,顶点坐标为(

14、3,4). 故选A. 【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.   7.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是(  ) A. B. C.或 D.或 【考点】H7:二次函数的最值. 【专题】选择题 【分析】将二次函数配方成顶点式,分m<﹣1、m>2和﹣1≤m≤2三种情况,根据y的最小值为﹣2,结合二次函数的性质求解可得. 【解答】解:y=x2﹣2mx=(x﹣m)2﹣m2, ①若m<﹣1,当x=﹣1时,y=1+2m=﹣2, 解得:m=﹣

15、 ②若m>2,当x=2时,y=4﹣4m=﹣2, 解得:m=<2(舍); ③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2, 解得:m=或m=﹣<﹣1(舍), ∴m的值为﹣或, 故选:D. 【点评】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解题的关键.   8.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为(  ) A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+1 【考点】H8:待定系数法求二次函数解析式. 【专题】选择题 【分析】根据抛物线的顶点坐标

16、设出,抛物线的解析式为:y=a(x+1)2﹣2,再把(1,10)代入,求出a的值,即可得出二次函数的解析式. 【解答】解:设抛物线的解析式为:y=a(x+1)2﹣2, 把(1,10)代入解析式得10=4a﹣2, 解得a=3, 则抛物线的解析式为:y=3(x+1)2﹣2=3x2+6x+1. 故选A. 【点评】本题主要考查了用待定系数法求二次函数解析式,在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式.   9.若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为(  ) A.x1=0,x2=4 B.x1=﹣2,x2=6 C

17、.x1=,x2= D.x1=﹣4,x2=0 【考点】HA:抛物线与x轴的交点. 【专题】选择题 【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x﹣2)2+1=0即可得到结论. 【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0), ∴4a+1=0, ∴a=﹣, ∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0, 解得:x1=0,x2=4, 故选A. 【点评】本题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的理解题意是解题的关键.   10.如图,在⊙O中,AB是直径,CD是弦,AB⊥

18、CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是(  ) A.AD=2OB B.CE=EO C.∠OCE=40° D.∠BOC=2∠BAD 【考点】M2:垂径定理. 【专题】选择题 【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断. 【解答】解:∵AB⊥CD, ∴=,CE=DE, ∴∠BOC=2∠BAD=40°, ∴∠OCE=90°﹣40°=50°. 故选D. 【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定

19、理.   11.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于(  ) A.180°﹣2α B.2α C.90°+α D.90°﹣α 【考点】M5:圆周角定理. 【专题】选择题 【分析】首先连接OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OBC的度数. 【解答】解:∵连接OC, ∵△ABC内接于⊙O,∠A=α, ∴∠BOC=2∠A=2α, ∵OB=OC, ∴∠OBC=∠OCB==90°﹣α. 故选D. 【点评】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.  

20、 12.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是(  ) A.(2,3) B.(3,2) C.(1,3) D.(3,1) 【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质. 【专题】选择题 【分析】由已知点的坐标得出△ABC为直角三角形,∠BAC=90°,得出△ABC的外接圆的圆心是斜边BC的中点,即可得出结果. 【解答】解:如图所示: ∵点A,B,C的坐标为(1,4),(5,4),(1,﹣2), ∴△ABC为直角三角形,∠BAC=90°, ∴△ABC的外接圆的圆心是斜边BC的中点,

21、∴△ABC外接圆的圆心坐标是(,), 即(3,1). 故选:D. 【点评】本题考查了三角形的外接圆与外心、坐标与图形性质、直角三角形的外心特征;熟记直角三角形的外心特征,根据题意得出三角形是直角三角形是解决问题的关键.   13.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 3 . 【考点】T7:解直角三角形. 【专题】填空题 【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决 【解答】解:平移CD到C′D′交AB于O′,

22、如右图所示, 则∠BO′D′=∠BOD, ∴tan∠BOD=tan∠BO′D′, 设每个小正方形的边长为a, 则O′B=,O′D′=,BD′=3a, 作BE⊥O′D′于点E, 则BE=, ∴O′E==, ∴tanBO′E=, ∴tan∠BOD=3, 故答案为:3. 【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.   14.抛物线y=(x﹣2)2﹣3的顶点坐标是 (2,﹣3) . 【考点】H3:二次函数的性质. 【专题】填空题 【分析】根据抛物线y=(x﹣2)2﹣3,可以看出该函数解析式就是二次函数

23、的顶点式,从而可以直接得到该函数的顶点坐标,从而可以解答本题. 【解答】解:∵抛物线y=(x﹣2)2﹣3 ∴该抛物线的顶点坐标为:(2,﹣3), 故答案为:(2,﹣3). 【点评】本题考查二次函数的性质,解题的关键是明确函数的顶点式,由顶点式可以直接得到顶点坐标.   15.如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为 ①④ . 【考点】HA:抛物线与x轴的交点;H4

24、二次函数图象与系数的关系. 【专题】填空题 【分析】根据抛物线与y轴交于点B(0,﹣2),可得c=﹣2,依此判断③;由抛物线图象与x轴交于点A(﹣1,0),可得a﹣b﹣2=0,依此判断①②;由|a|=|b|可得二次函数y=ax2+bx+c的对称轴为y=,可得x2=2,比较大小即可判断④;从而求解. 【解答】解:由A(﹣1,0),B(0,﹣2),得b=a﹣2, ∵开口向上, ∴a>0; ∵对称轴在y轴右侧, ∴﹣>0, ∴﹣>0, ∴a﹣2<0, ∴a<2; ∴0<a<2; ∴①正确; ∵抛物线与y轴交于点B(0,﹣2), ∴c=﹣2,故③错误; ∵抛物线

25、图象与x轴交于点A(﹣1,0), ∴a﹣b﹣2=0,无法得到0<a<2;②﹣1<b<0,故①②错误; ∵|a|=|b|,二次函数y=ax2+bx+c的对称轴在y轴的右侧, ∴二次函数y=ax2+bx+c的对称轴为y=, ∴x2=2>﹣1,故④正确. 故答案为:①④. 【点评】本题考查了抛物线与x轴的交点,二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<

26、0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.   16.如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB= 60 °. 【考点】MC:切线的性质. 【专题】填空题 【分析】由垂径定理易得BD=1,通过解直角三角形ABD得到∠A=30°,然后由切线的性质和直角三角形的两个锐角互余的性质可以求得∠AOB的度数. 【解答】解:∵OA

27、⊥BC,BC=2, ∴根据垂径定理得:BD=BC=1. 在Rt△ABD中,sin∠A==. ∴∠A=30°. ∵AB与⊙O相切于点B, ∴∠ABO=90°. ∴∠AOB=60°. 故答案是:60. 【点评】本题主要考查的圆的切线性质,垂径定理和一些特殊三角函数值,有一定的综合性.   17.王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2) 【考点

28、T8:解直角三角形的应用. 【专题】解答题 【分析】根据题意作出合适的辅助线,可以求得AD和CD的长,进而可以求得DB的长,然后根据勾股定理即可得到AB的长,然后与17比较大小,即可解答本题. 【解答】解:王浩同学能将手机放入卡槽AB内. 理由:作AD⊥BC于点D, ∵∠C=50°,AC=20cm, ∴AD=AC•sin50°=20×0.8=16cm, CD=AC•cos50°=20×0.6=12cm, ∵BC=18cm, ∴DB=BC﹣CD=18﹣12=6cm, ∴AB==, ∵17=<, ∴王浩同学能将手机放入卡槽AB内. 【点评】本题考查解直角三角

29、形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用直角三角形的相关知识解答.   18.随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米. (1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度的多少? 【考点】HE:二次函数的应用. 【专题】解答题 【分析】(1)以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐

30、标系,设抛物线的解析式为y=a(x﹣1)2+h,代入(0,2)和(3,0)得出方程组,解方程组即可, (2)求出当x=1时,y=即可. 【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系, 设抛物线的解析式为 :y=a(x﹣1)2+h, 代入(0,2)和(3,0)得:, 解得:, ∴抛物线的解析式为:y=﹣(x﹣1)2+; 即y=﹣x2+x+2(0≤x≤3); (2)y=﹣x2+x+2(0≤x≤3), 当x=1时,y=, 即水柱的最大高度为m. 【点评】本题考查了二次函数在实际生活中的运用,重点

31、是二次函数解析式的求法,利用顶点式求出解析式是解题关键.   19.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F. (1)试判断直线BC与⊙O的位置关系,并说明理由; (2)若BD=2,BF=2,求阴影部分的面积(结果保留π). 【考点】MB:直线与圆的位置关系;MO:扇形面积的计算. 【专题】解答题 【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线; (2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程

32、求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积. 【解答】解:(1)BC与⊙O相切. 证明:连接OD. ∵AD是∠BAC的平分线, ∴∠BAD=∠CAD. 又∵OD=OA, ∴∠OAD=∠ODA. ∴∠CAD=∠ODA. ∴OD∥AC. ∴∠ODB=∠C=90°,即OD⊥BC. 又∵BC过半径OD的外端点D, ∴BC与⊙O相切. (2)设OF=OD=x,则OB=OF+BF=x+2, 根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12, 解得:x=2,即OD=OF=2, ∴

33、OB=2+2=4, ∵Rt△ODB中,OD=OB, ∴∠B=30°, ∴∠DOB=60°, ∴S扇形AOB==, 则阴影部分的面积为S△ODB﹣S扇形DOF=×2×2﹣=2﹣. 故阴影部分的面积为2﹣. 【点评】本题考查了切线的判定,扇形面积,以及勾股定理,熟练掌握切线的判定是解本题的关键.   20.如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF. (1)求证:AD是⊙O的切线; (2)若⊙O的半径为5,CE=2,求EF的长. 【考点】ME:切线的判定与性质;S9:相似三角

34、形的判定与性质. 【专题】解答题 【分析】(1)由BC是⊙O的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论; (2)连接BF,根据相似三角形的判定和性质即可得到结论. 【解答】解:(1)∵BC是⊙O的直径, ∴∠BAF+∠FAC=90°, ∵∠D=∠BAF,∠AOD=∠FAC, ∴∠D+∠AOD=90°, ∴∠OAD=90°, ∴AD是⊙O的切线; (2)连接BF, ∴∠FAC=∠AOD, ∴△ACE∽△DCA, ∴, ∴, ∴AC=AE=, ∵∠CAE=∠CBF, ∴△ACE∽△BFE, ∴, ∴=,

35、∴EF=. 【点评】本题考查了切线的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.   21.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD. (1)求证:EB=ED. (2)若AO=6,求的长. 【考点】MN:弧长的计算;M5:圆周角定理. 【专题】解答题 【分析】(1)由AB=CD,根据圆心角、弧、弦的关系定理得出=,即+=+,那么=,根据圆周角定理得到∠CDB=∠ABD,利用等角对等边得出EB=ED; (2)先求出∠CDB=∠ABD=45°,再根据圆周角定理得出∠AOB=90°.又AO

36、6,代入弧长公式计算即可求解. 【解答】(1)证明:∵AB=CD, ∴=,即+=+, ∴=, ∵、所对的圆周角分别为∠CDB,∠ABD, ∴∠CDB=∠ABD, ∴EB=ED; (2)解:∵AB⊥CD, ∴∠CDB=∠ABD=45°, ∴∠AOD=90°. ∵AO=6, ∴的长==3π. 【点评】本题考查了弧长的计算,圆心角、弧、弦的关系定理,圆周角定理,等腰三角形的判定,证明出∠CDB=∠ABD是解题的关键.   22.如图,已知等腰直角三角形ABC,∠ACB=90°,D是斜边AB的中点,且AC=BC=16分米,以点B为圆心,BD为半径画弧,交BC于点F

37、以点C为圆心,CD为半径画弧,分别交AB、BC于点E、G.求阴影部分的面积. 【考点】MO:扇形面积的计算;KW:等腰直角三角形. 【专题】解答题 【分析】根据题意和图形可以得到阴影部分的面积是△ABC的面积减去扇形BFD的面积和右上角空白部分的面积,由题目中的数据可以求出各部分的面积,从而可以解答本题. 【解答】解:等腰直角三角形ABC,∠ACB=90°,D是斜边AB的中点,且AC=BC=16分米, ∴AB=16分米,∠DBF=45°, ∴BF=CD=8分米, ∴阴影部分的面积是:=(54+16π)平方分米, 阴影部分的面积是(54+16π)平方分米. 【点评】本题考查扇形面积的计算、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服