1、 第二章 一元二次方程测试卷(1) 一、精心选一选,相信自己的判断!(每小题3分,共30分) 1.(3分)方程2x2﹣3=0的一次项系数是( ) A.﹣3 B.2 C.0 D.3 2.(3分)方程x2=2x的解是( ) A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2= 3.(3分)方程x2﹣4=0的根是( ) A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4 4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是( ) A.﹣1 B.0 C.1 D.2 5.(3分)用配方法解一元二次
2、方程x2﹣4x﹣5=0的过程中,配方正确的是( ) A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9 6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( ) A.x2+130x﹣1400=0 B.x2+65x﹣350=0 C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0 7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是( ) A.6 B.8 C.10 D.12
3、 8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A.12 B.12或15 C.15 D.不能确定 9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是( ) A.1 B.1或﹣1 C.﹣1 D.2 10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有( )名学生. A.12 B.12或66 C.15 D.33 二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分). 11.(3分)写一个一元二次方程,使它的二次项系数是﹣3
4、一次项系数是2: . 12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b= ,另一个根是 . 13.(3分)方程(2y+1)(2y﹣3)=0的根是 . 14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= . 15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是 . 三、按要求解一元二次方程:(20分) 16.(20分)按要求解一元二次方程 (1)4x2﹣8x+1=0(配方法) (2)7x(5x+2)=6(5x+2)(因式分解法) (3)3x2+5(2x+1)
5、0(公式法) (4)x2﹣2x﹣8=0. 四、细心做一做: 17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少? 18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米? 19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求: (1
6、该企业2007年盈利多少万元? (2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元? 20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫? 21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动. (1)经过几秒△PCQ的面积为△ACB的面积的?
7、 (2)经过几秒,△PCQ与△ACB相似? (3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由. 参考答案与试题解析 一、精心选一选,相信自己的判断!(每小题3分,共30分) 1.(3分)方程2x2﹣3=0的一次项系数是( ) A.﹣3 B.2 C.0 D.3 【考点】一元二次方程的一般形式. 【分析】一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.
8、其中a,b,c分别叫二次项系数,一次项系数,常数项. 【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C. 【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有. 2.(3分)方程x2=2x的解是( ) A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2= 【考点】解一元二次方程-因式分解法;因式分解-提公因式法. 【专题】因式分解. 【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根. 【解答】解:x2﹣2x=0 x(x﹣2)=0 ∴x1=0,x2=2. 故选C. 【点评】本题考查的是用因式
9、分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根. 3.(3分)方程x2﹣4=0的根是( ) A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4 【考点】解一元二次方程-直接开平方法. 【分析】先移项,然后利用数的开方解答. 【解答】解:移项得x2=4,开方得x=±2, ∴x1=2,x2=﹣2. 故选C. 【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化
10、为1,再开平方取正负,分开求得方程解”; (2)运用整体思想,会把被开方数看成整体; (3)用直接开方法求一元二次方程的解,要仔细观察方程的特点. 4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是( ) A.﹣1 B.0 C.1 D.2 【考点】根的判别式;一元二次方程的定义. 【分析】先把方程变形为关于x的一元二次方程的一般形式:(2k﹣1)x2﹣8x+6=0,要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k. 【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0, 当△<0,方程没有实数根
11、即△=82﹣4×6(2k﹣1)<0, 解得k>,则满足条件的最小整数k为2. 故选D. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 5.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是( ) A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9 【考点】解一元二次方程-配方法. 【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案. 【解答】解:移项得:x2
12、﹣4x=5, 配方得:x2﹣4x+22=5+22, (x﹣2)2=9, 故选D. 【点评】本题考查了解一元二次方程,关键是能正确配方. 6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( ) A.x2+130x﹣1400=0 B.x2+65x﹣350=0 C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0 【考点】由实际问题抽象出一元二次方程. 【专题】几何图形问题. 【分析】本题可设长为(80+2x),宽为(50+
13、2x),再根据面积公式列出方程,化简即可. 【解答】解:依题意得:(80+2x)(50+2x)=5400, 即4000+260x+4x2=5400, 化简为:4x2+260x﹣1400=0, 即x2+65x﹣350=0. 故选:B. 【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简. 7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是( ) A.6 B.8 C.10 D.12 【考点】勾股定理. 【分析】设三边长分别为x,x+1,x+2,根据勾股定理可得(x+2)2=(x+1)2+x2,解方程可求得三角
14、形的三边长,利用直角三角形的性质直接求得面积即可. 【解答】解:设这三边长分别为x,x+1,x+2, 根据勾股定理得:(x+2)2=(x+1)2+x2 解得:x=﹣1(不合题意舍去),或x=3, ∴x+1=4,x+2=5, 则三边长是3,4,5, ∴三角形的面积=××4=6; 故选:A. 【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键. 8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A.12 B.12或15 C.15 D.不能确定 【考点】等腰三角形的性质
15、解一元二次方程-因式分解法;三角形三边关系. 【专题】分类讨论. 【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长. 【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3 ∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系 ∴等腰三角形的腰为6,底为3 ∴周长为6+6+3=15 故选C. 【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论. 9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是( ) A.1 B.1或﹣1 C.﹣1 D.2 【考点】根的判别式.
16、分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可. 【解答】解:根据题意得△=22﹣4(k+2)=0, 解得k=﹣1. 故选C. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有( )名学生. A.12 B.12或66 C.15 D.33 【考点】一元二次方程的应用. 【
17、分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可. 【解答】解:设全组共有x名学生,由题意得 x(x﹣1)=132 解得:x1=﹣11(不合题意舍去),x2=12, 答:全组共有12名学生. 故选:A. 【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键. 二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分). 11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2: ﹣3x2+2x﹣3=0 . 【考点】一元二次方程的一般形式. 【专题】开放型.
18、 【分析】根据一元二次方程的一般形式和题意写出方程即可. 【解答】解:由题意得:﹣3x2+2x﹣3=0, 故答案为:﹣3x2+2x﹣3=0. 【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项. 12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b= ﹣4 ,另一个根是 5 . 【考点】一元二次方程的解. 【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可. 【解答】解:∵x=
19、﹣1是方程x2+bx﹣5=0的一个实数根, ∴把x=﹣1代入得:1﹣b﹣5=0, 解得b=﹣4, 即方程为x2﹣4x﹣5=0, (x+1)(x﹣5)=0, 解得:x1=﹣1,x2=5, 即b的值是﹣4,另一个实数根式5. 故答案为:﹣4,5; 【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解. 13.(3分)方程(2y+1)(2y﹣3)=0的根是 y1=﹣,y2= . 【考点】解一元二次方程-因式分解法. 【专题】因式分解. 【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得. 【解答】解:∵(2y+
20、1)(2y﹣3)=0, ∴2y+1=0或2y﹣3=0, 解得y1=,y2=. 【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则. 14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= 3 . 【考点】根与系数的关系. 【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,代入计算即可. 【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2, ∴x1+x2=3, 故答案为:3. 【点评】本题考查了一元二次方程ax2+bx+c
21、0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=. 15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是 y2﹣3y﹣1=0 . 【考点】换元法解分式方程. 【专题】换元法. 【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看作一个整体. 【解答】解:原方程可化为: ﹣(x2﹣2x)+3=0 设y=x2﹣2x ﹣y+3=0 ∴1﹣y2+3y=0 ∴y2﹣3y﹣1=0. 【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体.
22、 三、按要求解一元二次方程:(20分) 16.(20分)按要求解一元二次方程 (1)4x2﹣8x+1=0(配方法) (2)7x(5x+2)=6(5x+2)(因式分解法) (3)3x2+5(2x+1)=0(公式法) (4)x2﹣2x﹣8=0. 【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法. 【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式. (2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解. (3)方程化为一般形式,找出二次项系数,一次
23、项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解. (4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可. 【解答】解:(1)4x2﹣8x+1=0(配方法) 移项得,x2﹣2x=﹣, 配方得,x2﹣2x+1=﹣+1, (x﹣1)2=, ∴x﹣1=± ∴x1=1+,x2=1﹣. (2)7x(5x+2)=6(5x+2)(因式分解法) 7x(5x+2)﹣6(5x+2)=0, (5x+2)(7x﹣6)=0, ∴5x+2=0,7x﹣6=0, ∴x1=﹣,x2=; (3)3x2+5(2x+1)=0(公式法) 整理得,3x2+10
24、x+5=0 ∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40, ∴x===, ∴x1=,x2=; (4)x2﹣2x﹣8=0. (x+4)(x﹣2)=0, ∴x+4=0,x﹣2=0, ∴x1=﹣4,x2=2. 【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程. 四、细心做一做: 17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少? 【考点】一元二次方程的应用. 【专题】几何图形问题. 【分析】设养鸡场的宽为xm
25、则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解. 【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150 解这个方程;x2=10 当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去, 当养鸡场的宽为x1=10m时,养鸡场的长为15m. 答:鸡场的长与宽各为15m,10m. 【点评】本题考查的是一元二次方程的应用,难度一般. 18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米? 【考点】一元二次
26、方程的应用. 【专题】几何图形问题. 【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解. 【解答】解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米, 由题意得(32﹣2x)(15﹣x)=32×15×(1﹣) 即x2﹣31x+30=0 解得x1=30 x2=1 ∵路宽不超过15米 ∴x=30不合题意舍去 答:小路的宽应是1米. 【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键. 19.(7分)某企业2006年盈利1
27、500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求: (1)该企业2007年盈利多少万元? (2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元? 【考点】一元二次方程的应用. 【专题】增长率问题. 【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率). (1)可先求出增长率,然后再求2007年的盈利情况. (2)有了2008年的盈利和增长率,求出2009年的就容易了. 【解答】解:(1)设每年盈利的年增长率为x, 根据题意,得1500(1+x)2=2160
28、. 解得x1=0.2,x2=﹣2.2(不合题意,舍去). ∴1500(1+x)=1500(1+0.2)=1800. 答:2007年该企业盈利1800万元. (2)2160(1+0.2)=2592. 答:预计2009年该企业盈利2592万元. 【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量. 20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫
29、 【考点】一元二次方程的应用. 【专题】销售问题. 【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可. 【解答】解:设涨价4x元,则销量为(500﹣40x),利润为(10+4x), 由题意得,(500﹣40x)×(10+4x)=8000, 整理得,5000+2000x﹣400x﹣160x2=8000, 解得:x1=,x2=, 当x1=时,则涨价10元,销量为:400件; 当x2=时,则涨价30元,销量为:200件. 答:当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫. 【
30、点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用. 21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动. (1)经过几秒△PCQ的面积为△ACB的面积的? (2)经过几秒,△PCQ与△ACB相似? (3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由. 【考点】一元二
31、次方程的应用;相似三角形的判定. 【专题】几何动点问题. 【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ=S△ABC列出方程求解; (2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有=或=,分别代入可得到关于t的方程,可求得t的值; (3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么=,依此列出比例式=,解方程即可. 【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的, 由题意得:
32、PC=2xm,CQ=(6﹣x)m, 则×2x(6﹣x)=××8×6, 解得:x=2或x=4. 故经过2秒或4秒,△PCQ的面积为△ACB的面积的; (2)设运动时间为ts,△PCQ与△ACB相似. 当△PCQ与△ACB相似时,则有=或=, 所以=,或=, 解得t=,或t=. 因此,经过秒或秒,△OCQ与△ACB相似; ( 3)有可能. 由勾股定理得AB=10. ∵CD为△ACB的中线, ∴∠ACD=∠A,∠BCD=∠B, 又PQ⊥CD, ∴∠CPQ=∠B, ∴△PCQ∽△BCA, ∴=,=, 解得y=. 因此,经过秒,PQ⊥CD. 【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.






