ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:205.51KB ,
资源ID:11233488      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11233488.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(多边形内角和与外角和(提高)知识讲解.doc)为本站上传会员【知****运】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

多边形内角和与外角和(提高)知识讲解.doc

1、 多边形内角和与外角和(提高)知识讲解 【学习目标】 1.理解多边形的概念; 2.掌握多边形内角和与外角和公式; 3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【要点梳理】 知识点一、多边形的概念 1.定义:在平面内不在同一直线上的一些线段首尾顺次联接结所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个

2、n边形有n个内角。 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 凸多边形 凹多边形 3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形。如图: 要点诠释: (1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线

3、的条数为; (3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形. 知识点二、多边形内角和定理 n边形的内角和为(n-2)·180°(n≥3). 要点诠释: (1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于; 知识点三、多边形的外角和 多边形的外角和为360°. 要点诠释: (1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关; (2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于;

4、 (3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数. 【典型例题】 类型一、多边形的概念 1.同学们在平时的数学活动中会遇到这样一个问题:把正方形纸片截去一个角后,还剩多少角,余下的图形是几边形,亲爱的同学们,你知道吗? 【答案与解析】 解:这个问题,我们可以用图来说明. 按图(1)所示方式去截,不经过点B和D,还剩五个角,即得到一个五边形. 按图(2)所示方式去截,经过点D(或点B).不经过点B(或点D),还剩4个角,即得到一个四边形. 按图(3)所示方式去截,经过点D、点B,

5、则剩下3个角,即得到三角形. 答:余下的图形是五边形或四边形或三角形. 【总结升华】一个n边形剪去一个角后,可能是(n+1)边形,也可能是n边形,也可能是(n-1)边形,利用它我们可以解决一些具体问题. 举一反三: 【变式1】如图,四边形ABCD中,∠B=40°,沿直线MN剪去∠B,则所得五边形AEFCD中,∠1+∠2= 。 【答案】220° 【变式2】一个多边形共有20条对角线,则多边形的边数是( ). A.6 B.7 C.8 D.9 【答案】C. 类型二、多边形内角和定理 2.如图所示,求∠A+∠B+∠C+∠D+∠E

6、∠F的度数. 【思路点拨】由于∠A、∠B、∠C、∠D、∠E、∠F的度数都不能直接求出.因此求∠A+∠B+∠C+∠D+∠E+∠F的结果只能实施整体求值. 【答案与解析】 解:连接DE,用对顶三角形的性质,可得∠A+∠B=∠BED+∠ADE, 所以∠A+∠B+∠C+∠ADC+∠BEF+∠F =∠BED+∠ADE+∠C+∠ADC+∠BEF+∠F =∠C+∠EDC+∠FED+∠F. 因为四边形CDEF的内角和为360°, 所以∠A+∠B+∠C+∠D+∠E+∠F=360°. 【总结升华】如图所示为对顶三角形.利用∠A+∠B=∠C+∠D“

7、转移”角. 举一反三: 【高清课堂:多边形及其内角和 例5(2)(3)】 【变式】(1)如图1,则∠A+∠B+∠C+∠D+∠E+∠F= . (2)如图2,则∠A+∠B+∠C+∠D+∠E+∠F+∠G= . 【答案】(1)360°;(2)540° 3. (山东莱芜)一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形的边数为 ( ) . A.15 B.16 C.17 D.15或16或17 【思路点拨】一个多边形截去一个角后的多边形的边数不确定,

8、要分类讨论. 【答案】D 【解析】 解:本题可设新多边形为n边形,由题意可知,原多边形可以为n边形;(n+1)边形;(n-1)边形: 即(n-2)×180°=2520° 解得n=16. 故n-1=15,n+1=17. 因此原多边形可以是十五边形,也可以是十六边形,也可以是十七边形,所以选D. 【总结升华】此问题比较抽象,可以利用四边形类比发现其规律,然后再推广到一般. 【高清课堂:多边形及其内角和 例2、3】 举一反三: 【变式1】(1)一个凸多边形的内角和与它的一个外角的和为2005º,求多边形的边数。 (2)如果一个凸多边形,除了一个内角以外,其它内角的

9、和为2570°,求这个没有计算在内的内角的度数. 【答案】(1)用2005÷180=11余25,n-2=11,n=13. (2)用2570÷180=14余50,180o-50o =130o 【变式2】若多边形最多有四个钝角,那么此多边形的边数最多是______. 【答案】七 类型三、多边形的外角和 4.科研人员为某机器人编制了一段程序,如果机器人在平地上按照图中的步骤行走,那么该机器人所走的总路程为 ( ) A.6米 B.8米 C.12米 D.不能确定 【答案】B 【解析】 解析:先按照程序的步骤画图(如图所示),发现一次转弯后

10、不能回到出发点,从画出的图形,可以发现要使机器人回到点A处,那么机器人走过的路径应该是一个多边形,每次转弯的角就是这个多边形的外角.利用多边形的外角和为360°,而45°×8=360°,所以经过8次转弯即可到达点A处.又因为每次走1米,所以该机器人所走的总路程为8米. 【总结升华】解决此题的关键同样是把生活实际问题转化为数学问题,在散步之中感悟数学知识.其中蕴含了多边形的外角和为360°的有关知识.本例为“设计程序”类考题,读懂程序,画出图形,理解很重要. 举一反三: 【变式】如图所示是某厂生产的一块模板,已知该模板的边AB∥CF,CD∥AE. 按规定AB、CD的延长线相交成80°角

11、因交点不在模板上,不便测量. 这时师傅告诉徒弟只需测一个角,便知道AB、CD的延长线的夹角是否合乎规定,你知道需测那一个角吗?说明理由. 【答案】 解:测∠A或∠C的度数,只需∠A=100°或∠C=100°, 即知模板中AB、CD的延长线的夹角是否符合规定. 理由如下:连接AF,∵AB∥CF, ∴∠BAF+∠AFC=180°. 又∵∠EAF+∠E+∠AFE=180°, ∴∠BAE+∠E+∠EFC=360°. 若∠C=100°, 则AB、CD的延长线的夹角=540°- 360°- 100°= 80°, 即符合规定. 同理:若连接CE,可得∠AEF+∠F+∠DCF=360°. 若∠A=100°,则也符合规定.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服