1、用MATLAB优化工具箱解线性规划 模型: 命令: [1] [x,fval]=linprog(c,A,b,Aeq,beq, VLB,VUB) [2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点 编写M文件xxgh3.m如下: f = [13 9 10 11 12 8]; A = [0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3]; b = [800; 900]; Aeq=[1 0 0
2、1 0 0 0 1 0 0 1 0 0 0 1 0 0 1]; beq=[400 600 500]; vlb = zeros(6,1); vub=[]; [x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub) Matlab优化工具箱简介 1. MATLAB求解优化问题的主要函数 2. 优化函数的输入变量 使用优化函数或优化工具箱中其它优化函数时, 输入变量见下表:
3、 3. 优化函数的输出变量下表 变量 描 述 调用函数 x 由优化函数求得的值.若exitflag>0,则x为解;否则,x不是最终解,它只是迭代制止时优化过程的值 所有优化函数 fval 解x处的目标函数值 linprog,quadprog,fgoalattain, fmincon,fminimax,lsqcurvefit, lsqnonlin, fminbnd exitflag 描述退出条件: l exitflag>0,表目标函数收敛于解x处 l exitflag=0,表已达到函数评价或迭代的最大次数 l exitflag<0,表目标函数不收敛
4、 output 包含优化结果信息的输出结构. l Iterations:迭代次数 l Algorithm:所采用的算法 l FuncCount:函数评价次数 所有优化函数 4.控制参数options的设置 Options中常用的几个参数的名称、含义、取值如下: (1) Display: 显示水平.取值为’off’时,不显示输出; 取值为’iter’时,显示每次迭代的信息;取值为’final’时,显示最终结果.默认值为’final’. (2) MaxFunEvals: 允许进行函数评价的最大次数,取值为正整数. (3) MaxIter: 允许进行迭代的最大次数,取值为正
5、整数 控制参数options可以通过函数optimset创建或修改。命令的格式如下: (1) options=optimset(‘optimfun’) 创建一个含有所有参数名,并与优化函数optimfun相关的默认值的选项结构options. (2)options=optimset(‘param1’,value1,’param2’,value2,...) 创建一个名称为options的优化选项参数,其中指定的参数具有指定值,所有未指定的参数取默认值. (3)options=optimset(oldops,‘param1’,value1,’param2’, value
6、2,...) 创建名称为oldops的参数的拷贝,用指定的参数值修改oldops中相应的参数. 例:opts=optimset(‘Display’,’iter’,’TolFun’,1e-8) 该语句创建一个称为opts的优化选项结构,其中显示参数设为’iter’, TolFun参数设为1e-8. 5用Matlab解无约束优化问题 一元函数无约束优化问题: 常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x,fval]= fminbnd(...) (4)[x,fval,
7、exitflag]= fminbnd(...)
(5)[x,fval,exitflag,output]= fminbnd(...)
其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。
函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。
例1 求在0 8、 0,8)
f1='-2*exp(-x).*sin(x)';
[xmax,ymax]=fminbnd (f1, 0,8)
运行结果:
xmin = 3.9270 ymin = -0.0279
xmax = 0.7854 ymax = 0.6448
多元函数无约束优化问题
标准型为:min F(X)
命令格式为:
(1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 )
(2)x= fminunc(fun,X0 ,options);
9、 或x=fminsearch(fun,X0 ,options)
(3)[x,fval]= fminunc(...);
或[x,fval]= fminsearch(...)
(4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch
(5)[x,fval,exitflag,output]= fminunc(...);
或[x,fval,exitflag,output]= fminsearch(...)
说明:
• fminsearch是用单纯形法寻优. fminunc的算法见 10、以下几点说明:
[1] fminunc为无约束优化提供了大型优化和中型优化算法。由options中的参数LargeScale控制:
LargeScale=’on’(默认值),使用大型算法
LargeScale=’off’(默认值),使用中型算法
[2] fminunc为中型优化算法的搜索方向提供了4种算法,由
options中的参数HessUpdate控制:
HessUpdate=’bfgs’(默认值),拟牛顿法的BFGS公式;
HessUpdate=’dfp’,拟牛顿法的DFP公式;
HessUpdate=’steepdesc’,最速下降法
[3] fminunc 11、为中型优化算法的步长一维搜索提供了两种算法,
由options中参数LineSearchType控制:
LineSearchType=’quadcubic’(缺省值),混合的二次和三
次多项式插值;
LineSearchType=’cubicpoly’,三次多项式插
• 使用fminunc和 fminsearch可能会得到局部最优解.
例4 Rosenbrock 函数 f(x1,x2)=100(x2-x12)2+(1-x1)2
的最优解(极小)为x*=(1,1),极小值为f*=0. 12、试用
不同算法(搜索方向和步长搜索)求数值最优解.
初值选为x0=(-1.2 , 2).
1. 为获得直观认识,先画出Rosenbrock 函数的三维图形,
输入以下命令:
[x,y]=meshgrid(-2:0.1:2,-1:0.1:3);
z=100*(y-x.^2).^2+(1-x).^2;
mesh(x,y,z)
2. 画出Rosenbrock 函数的等高线图,输入命令:
contour(x,y,z,20)
hold on
plot(-1.2,2,' o ');
13、 text(-1.2,2,'start point')
plot(1,1,'o')
text(1,1,'solution')
3.用fminsearch函数求解
输入命令:
f='100*(x(2)-x(1)^2)^2+(1-x(1))^2';
[x,fval,exitflag,output]=fminsearch(f, [-1.2 2])
运行结果:
x =1.0000 1.0000
fval =1.9151e-010
exitflag = 1
output = iterations: 108
14、 funcCount: 202
algorithm: 'Nelder-Mead simplex direct search'
4. 用fminunc 函数
(1)建立M-文件fun2.m
function f=fun2(x)
f=100*(x(2)-x(1)^2)^2+(1-x(1))^2
(2)主程序wliti44.m
[x,fval,exitflag,output]= fminunc(fun,X0 ,options)
Rosenbrock函数不同算法的计算结果
15、
可以看出,最速下降法的结果最差.因为最速下降法特别不适合于从一狭长通道到达最优解的情况.
非线性规划
1、 二次规划
标准型为:
Min Z= XTHX+cTX
s.t. AX<=b
VLB≤X≤VUB
用MATLAB软件求解,其输入格式如下:
1. x=quadprog(H,C,A,b);
2. x=quadprog(H,C,A,b,Aeq,beq);
3. x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);
4. x=quadpr 16、og(H,C,A,b,Aeq,beq ,VLB,VUB,X0);
5.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options);
6. [x,fval]=quaprog(...);
7. [x,fval,exitflag]=quaprog(...);
8. [x,fval,exitflag,output]=quaprog(...);
一般非线性规划
标准型为:
min F(X)
s.t AX<=b G(X)
Ceq(X)=0 VLBXVUB
17、
其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:
1. 首先建立M文件fun.m,定义目标函数F(X):
function f=fun(X);
f=F(X);
2. 若约束条件中有非线性约束:G(X)或Ceq(X)=0,则建立M文件nonlcon.m定义函数G(X)与Ceq(X):
function [G,Ceq]=nonlcon(X)
G=...
Ceq=...
3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下:
(1) x 18、fmincon(‘fun’,X0,A,b)
(2) x=fmincon(‘fun’,X0,A,b,Aeq,beq)
(3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,VLB,VUB)
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’)
(5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
(6) [x,fval]= fmincon(...)
(7) [x,f 19、val,exitflag]= fmincon(...)
(8)[x,fval,exitflag,output]= fmincon(...)
注意:
[1] fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为’on’),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法。
[2] fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。
[3] fmincon函数可能会给出局部最优解,这与初值X0的选取有关。






