ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:244.86KB ,
资源ID:11224889      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11224889.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(二次函数中平行四边形通用解决方法.doc)为本站上传会员【知****运】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二次函数中平行四边形通用解决方法.doc

1、● 探究  (1)在图1中,已知线段AB,CD,其中点分别为E,F。 ①若A(-1,0),B(3,0),则E点坐标为__________;  ②若C(-2,2),D(-2,-1),则F点坐标为__________; (2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程; ●归纳  无论线段AB处于直角坐标系中的哪个位置, 当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y) 时,x=_________,y=___________;(不必证明)  ●运用  在图

2、2中,一次函数y=x-2与反比例函数的图象交点为A,B。 ①求出交点A,B的坐标;  ②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。 以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题. 1 两个结论,解题的

3、切入点 数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。 1.1 线段中点坐标公式 平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),则线段AB的中点坐标为(,). 图1 证明 : 如图1,设AB中点P的坐标为(xP,yP).由xP-x1=x2-xP,得xP=,同理yP=,所以线段AB的中点坐标为(,). 1.2 平行四边形顶点坐标公式 图2 □ABCD的顶点坐标分别为A(xA,yA)、B(xB,yB)、C(xC,yC)、D(xD,yD),则:xA+xC=xB+xD;y

4、A+yC=yB+yD. 证明: 如图2,连接AC、BD,相交于点E. ∵点E为AC的中点, ∴E点坐标为(,). 又∵点E为BD的中点, 图3 ∴E点坐标为(,). ∴xA+xC=xB+xD;yA+yC=yB+yD. 即平行四边形对角线两端点的横坐标、纵坐标之和分别相等. 2 一个基本事实,解题的预备知识 如图3,已知不在同一直线上的三点A、B、C,在平面内另找一个点D,使以A、B、C、D为顶点的四边形是平行四边形.答案有三种:以AB为对角线的□ACBD1,以AC为对角线的□ABCD2,以BC为对角线的□ABD3C. 3

5、 两类存在性问题解题策略例析与反思 3.1 三个定点、一个动点,探究平行四边形的存在性问题 例1 已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=x-a分别与x轴、y轴相交于B、C两点,并且与直线AM相交于点N. (1)填空:试用含a的代数式分别表示点M与N的坐标,则M( ), N( ); (2)如图4,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连接CD,求a的值和四边形ADCN的面积; (3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P、A、C、N为顶点的四边形是平行四边形?若存在

6、求出点P的坐标;若不存在,试说明理由. 解:(1)M(1,a-1),N(,-);(2)a=-;S四边形ADCN=; (3)由已知条件易得A(0,a)、C(0,-a)、N(,-).设P(m,m2-2m+a). ①当以AC为对角线时,由平行四边形顶点坐标公式(解题时熟练推导出),得: 图4 ,∴. ∴P1(,-); ②当以AN为对角线时,得: ,∴(不合题意,舍去). ③当以CN为对角线时,得: ,∴. ∴P2(-,). ∴在抛物线上存在点P1(,-)和P2(-,),使得以P、A、C、N为顶点的四边形是平行四边形. 反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐

7、标,运用平行四边形顶点坐标公式列方程(组)求解.这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论. 3.2 两个定点、两个动点,探究平行四边形存在性问题 图5 例2 如图5,在平面直角坐标系中,抛物线A(-1,0),B(3,0),C(0,-1)三点. (1)求该抛物线的表达式; (2)点Q在y轴上,点P在抛物线上,要使以点Q、P、A、B为 顶点的四边形是平行四边形,求所有满足条件点P的坐标. 解 :(1)易求抛物线的表达式为y=; (2)由题意知点Q在y轴上,设点Q坐标为(0,t);点P在抛物线上

8、 设点P坐标为(m,). 尽管点Q在y轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了. ①当以AQ为对角线时,由四个顶点的横坐标公式得:-1+0=3+m, ∴m=-4,∴P1(-4,7); ②当以BQ为对角线时,得:-1+m=3+0,∴m=4,∴P2(4,); ③当以AB为对角线时,得:-1+3=m+0,∴m=2,∴P3(2,-1). 综上,满足条件的点P为P1(-4,7)、P2(4,)、P3(2,-1). 反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在x轴(y轴)或对称轴或某一定直线上.设出抛物线上的动点坐标,另一个动点若在x轴上,纵坐标为0,则用平

9、行四边形顶点纵坐标公式;若在y轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关的公式.本例中点Q的纵坐标t没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的三条线段为对角线分类,分三种情况讨论. 例3 如图6,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值; (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,

10、判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. 解:(1)易求抛物线的解析式为y=x2+x-4; (2)s=-m2-4m(-4

11、对角线时, ∴s1=4,s2=0(舍). ∴Q4(4,-4). 综上,满足条件的点Q为Q1(-2+,2-)、Q2(-2-,2+)、Q3(-4,4)、Q4(4,-4). 反思:该题中的点Q是直线y=-x上的动点,设动点Q的坐标为(s,-s),把Q看做定点,就可根据平行四边形顶点坐标公式列方程组了. 4 问题总结 这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类,分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组).这种解法,不必画出平行四边形草图,只要合理

12、分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想. 如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒. (1)求A、B两点的坐标。 (2)求当t为何值时,△APQ与△AOB相似,并直

13、接写出此时点Q的坐标. (3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由. 如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标; (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

14、 如图,在平面直角坐标系xOy中,直线y=2x+4与y轴交于A点,与x轴交于B点,抛物线C1:y=﹣x2+bx+c过A、B两点,与x轴另一交点为C. (1)求抛物线解析式及C点坐标. (2)向右平移抛物线C1,使平移后的抛物线C2恰好经过△ABC的外心,抛物线C1、C2相交于点D,求四边形AOCD的面积. (3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为抛物线C1上一点,是否存在以点M、Q、P、B为顶点的四边形为平行四边形?若存在,直接写出P点坐标;不存在,请说明理由. 如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧). (1)求抛物线的解析式及点B坐标; (2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值; (3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服