ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:149.81KB ,
资源ID:11224308      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11224308.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(《基本不等式》教学设计和教学反思.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《基本不等式》教学设计和教学反思.doc

1、《基本不等式》教学设计 一、教材分析 1、本节教材的地位和作用 “基本不等式” 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究.在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。 2、 教学目标 (1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。 (2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。  (3)情感目标:培

2、养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。 3、教学重点、难点 根据课程标准制定如下的教学重点、难点 重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。 难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。 二、教法说明 本节课借助几何画板,使用多媒体辅助进行直观演示.采用启发式教学法创设问题情景,激发学生开始尝试活动.运用生活中的实际例子,让学生享受解决实际问题的乐趣. 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥

3、使认知效益最大。让学生爱学、乐学、会学、学会。 三、学法指导 为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导.因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。 四、教学设计 ◆运用2002年国际数学家大会会标引入 ◆运用分析法证明基本不等式 ◆不等式的几何解释 ◆基本不等式的应用 1、运用2002年国际数学家大会会标引入 A B C E D G F a H b 如图,这是在北京召开的第24届国际数学家大会会标.会标根据中国古代数学家赵爽

4、的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车) D G C b a 正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_ 从图形中易得,s≥s’,即 问题1:它们有相等的情况吗?何时相等? 问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解) 一般地,对于任意实数a、b,我们有 当且仅当(重点强调)a=b时,等号成立(合情推理) 问题3:你能给出它的

5、证明吗?(让学生独立证明) 设计意图 (1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。 (2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。 (3)三个思考题为学生创造情景,逐层深入,强化理解. 2、运用分析法证明基本不等式 如果 a>0,b>0 , 用 和分别代替a,b。可以得到 也可写成 (强调基本不等式成立的前提条件“正”)(演绎推理) 问题4:你能用不等式的性质直接推导吗? 要证

6、 ① 只要证 ② 要证② ,只要证 ③ 要证③ ,只要证 ④ 显然, ④是成立的.当且仅当a=b时, 不等式中的等号成立. (强调基本不等式取等的条件“等”) 设计意图 (1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神; (2)证明过程印证了不等式的正确性,并能加深学生对基

7、本不等式的理解; B D E A C (3)此种证明方法是“分析法”,在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。 3、不等式的几何解释 如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为 问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解) 设计意图 几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。 4、基本不等式的应用 例1.证

8、明 (学生自己证明) 设计意图 (1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习“分析法”证明不等式的过程; (2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式; (3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。 例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小? (2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?   (让学生分组合作、探究完成) 设计意图 (1)此题目利用基本不等式求最

9、值,包含正用,逆用,体现了基本不等式的应用价值; (2)强调利用不等式求最值的关键点:“正”“定”“等”; (3)有利于培养学生团结合作的精神。 练习 :(1)若a,b同号,则 (2)P113 练习1.2 设计意图 巩固基本不等式,让学生熟悉公式,并学会应用。 小结:(让学生畅所欲言) 设计意图 有利于发挥学生的主观能动性,突出学生的主体地位。 作业: 必做题:P113 A组3、4 选做题: 设计意图 (1)必做题是让学生巩固所学知识,熟练公式应用,强化学生基础知识、基本技能的形成; (2)选做题达到分层教学的目的,

10、根据学生的实际情况,对他们进行素质教育。 时间安排:引入约5分钟 证明基本不等式约10分钟 几何意义约10分钟 知识应用约15分钟 小结约5分钟 五、板书设计 例1 A B C E D G F a H b 基本不等式 分析法证明 几何解释 例题讲解 小结 作业 例2 教学反思:本节课通过从生活实际问题引入课题,增强学生的学习兴趣,在教学设计上抓住一正二定三相等,通过对基本不等式的顺用逆用,掌握基本不等式的简单的求最值问题,达到本节课的教学目标。本节课主要采用教师引导,学生主动探究知识方法,体现了学生为主体的新课标理念。在此次教学过程的不足之处在于对时间的分配存在问题,造成了前松后紧。 第 6 页 共 6 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服