ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:507.39KB ,
资源ID:11206694      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11206694.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数字图像处理论文.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数字图像处理论文.docx

1、河北经贸大学毕业论文 河北经贸大学 课程论文 课程名称: 数字图像处理 论文题目: 基于Matlab的数字图像处理的典型应用——图像运算 专业: 10级网络工程 班级: 1班 姓名: 李颖 学号: 201019731041

2、 摘 要 数字图像处理是用计算机对图像信息进行处理的一门技术,主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。本文论述了用Matlab编程对数字图像进行图像运算的基本方法。 图像运算涵盖了MATLAB程序设计、图像点运算、代数运算、几何运算等基本知识及其应用(点运算是图象处理的一个重要运算)。以及对图像加入噪声、图像缩放和图像旋转。  关键词 图像点运算;代数运算;几何运算;图像缩放;图像旋转 目录 绪论 第一章 图

3、像运算 2.1 点运算 2.2 代数运算 2.3 几何运算 第二章 程序设计与调试 结束语 参考文献 绪论 早期的计算机无论在计算速度或存储容量方面,难于满足对庞大图像数据进行实时处理的要求。随着计算机硬件技术及数字化技术的发展,计算机、内存及外围设备的价格急剧下降,而其性能却有了大幅度的提高。 图像信息是人类获得外界信息的主要来源,数字图像处理技术越来越多的应用于人们日常工作、学习和生活中。和传统图像处理相比,它具有精度高、再观性好、通用性和灵活性强等特点。在近代科学研究、军事技术、工农业生产、医学、气象

4、及天文学等领域中也得到了广泛应用。 近几年来,随着计算机和各个相关领域研究的迅速发展,科学计算可视化、多媒体技术等研究和应用的兴起,数字图像处理从1个专门领域的学科,变成了1种新型的科学研究和人机界面的工具。数字图像作为一门新兴技术,它是二十一世纪五十年代数字计算机发展到相当水平后开拓出来的计算机应用新领域,它把图像转换成数据矩阵存放于计算机中,并进行滤波、增强、删除等处理,包括图像输入输出技术、图像分析、变换于处理技术以及图像识别和特征提取等方面。六十到七十年代数字处理技术的理论和方法更加完善,其准确性、灵活性和通用性逐步提高。 在日常生活中,电脑人像艺术,电视中的特殊效果,自动售货机钞

5、票的识别,邮政编码的自动识别和利用指纹、虹膜、面部等特征的身份识别等均是图像处理的广泛应用。 进行数字图像处理时主要涉及数字图像点运算处理,针对图像的像素进行加、减、乘、除等运算,有效地改变了图像的直方图分布。 第一章 图像运算 按图像处理运算的数学特征, 图像基本运算可分为:点运算、代数运算和几何运算。 1.1 点运算 点运算是指对一幅图像中每个像素点的灰度值进行计算的方法。 点运算通过对图像中每个像素值进行计算,改善图像显示效果的操作,也称对比度增强,对比度拉伸,灰度变换,可以表示为B(x,y)=f(A(x,y))。进行逐点运算,输入映射为输出,不

6、改变图像像素的空间关系。 应用点运算,将输入图像转换为在每一灰度级上都有相同的像素点数的输出图像(输出直方图是平的)。 均衡后,每一灰度级的像素个数为Ao/Dm。 由于式 的分子分母是同一自变量,如果它们仅差一比例常数,也就是说分母是分子的若干倍,例如Dm/Ao倍,即 ,则上式的H(D)部分被约掉。仅剩下与D无关的常数项。 1.2 代数运算 代数运算是指将两幅或多幅图像通过对应像素之间的加、减、乘、除运算得到输出图像的方法。 代数运算是指对两幅输入图像进行点对点的加、减、乘或除运算而得到输出图像的运算。对于相加和相乘的情形,可能不止有两幅图像参加运算。在一般情况下,

7、输入情况之一可能为常数。四种图像处理代数运算的数学表达式如下: C(x,y)=A(x,y)+B(x,y) C(x,y)=A(x,y)-B(x,y) C(x,y)=A(x,y)*B(x,y) C(x,y)=A(x,y)/B(x,y)  其中A(x,y)和B(x,y)为输入图像,而C(x,y)为输出图像。还可以通过适当的组合形成涉及几幅图像的复合代数运算方程。 在MATLAB中,可以用函数简单的得到数字图像的图像数据矩阵(即A(x,y)和B(x,y)),有了这些矩阵后只要适当的设计代数运算的形式并写出方程,就可以得到一个输出图像的矩阵(即C(x,y))图像相加的一个重要应用是对同一场景

8、的多幅图像求平均值。这点被经常用来有效的降低加性随机噪声的影响。 1.3 几何运算 几何运算就是改变图像中物体对象(像素)之间的空间关系。 从变换性质来分,几何变换可以分为图像的位置变换(平移、镜像、旋转)、形状变换(放大、缩小)以及图像的复合变换等。  几何运算可改变图像中各物体之间的空间关系。这种运算可以被看成是将物体在图像内移动。一个几何运算需要两个独立的算法。首先,需要一个算法来定义空间变换本身,用它来描述每个像素如何从其初始位置“移动”到终止位置,即每个像素的“运动”。同时,还需要一个用于灰度插值的算法,这是因为,在一般情况下,输入图像的位置坐标(x,y)为整数,而输出

9、图像的位置坐标为非整数,反过来也如此。因此插值就是对变换之后的整数坐标位置的像素值进行估计。MATLAB提供了一些函数实现这些功能。  插值是常用的数学运算,通常是利用曲线拟合的方法,通过离散的采样点建立一个连续函数来逼近真实的曲线,用这个重建的函数便可以求出任意位置的函数值。  MATLAB图像处理工具箱中的函数imresize常用下述的3种方法对图像进行插值缩放。(如果不指定插值方法,则默认为最邻近插值法。)  最近邻插值是最简便的插值,在这种算法中,每一个插值输出像素的值就是在输入图像中与其最临近的采样点的值。最近邻插值是工具箱函数默认使用的插值方法,而且这种插值方法的运算量非常小

10、当图像中包含像素之间灰度级变化的细微结构时,最近邻插值法会在图像中产生人工的痕迹。  双线性插值法的输出像素值是它在输入图像中2×2领域采样点的平均值,它根据某像素周围4个像素的灰度值在水平和垂直两个方向上对其插值。  双三次插值的插值核为三次函数,其插值邻域的大小为4×4。它的插值效果比较好,但相应的计算量也比较大。 第二章 程序设计与调试 为了完成人为的往一幅图像中加入噪声,并通过多次相加求平均的方法消除所加入的噪声。在MATLAB中提供了给图像加入噪声的函数imnoise imnoise的语法格式为 J = imnoise(I,type) J = imnoise(

11、I,type,parameters) 其中J = imnoise(I,type)返回对原始图像I添加典型噪声的有噪图像J。 参数type和parameters用于确定噪声的类型和相应的参数。 例:对图像eight.tif分别加入高斯噪声、椒盐噪声和乘性噪声: 执行该程序的命令: I=imread('eight.tif'); J1=imnoise(I,'gaussian',0,0.02); J2=imnoise(I,'salt & pepper',0.02); J3=imnoise(I,'speckle',0.02); subplot(2,2,1),imshow(I),titl

12、e('原图像'); subplot(2,2,2),imshow(J1),title('加高斯噪声'); subplot(2,2,3),imshow(J2),title('加椒盐噪声'); subplot(2,2,4),imshow(J3),title('加乘性噪声'); 效果图像如下: 原图像 加高斯噪声     加椒盐噪声 加乘性噪声 在MATLAB程序语言中,分号的用处为不显示程序运算中的中

13、间结果,这在一定程度上使系统运算的效率增高,因此在不需知道中间结果的情况下,可以用分号作为一个句子的结尾,而不显示该句运算的中间结果。  代数运算中需要有若干幅带有随机噪声的图像数据,在这里我们运用MATLAB中的FOR循环语句来完成产生多幅带有噪声的图像数据及将这些图像数据进行相加运算。 这种循环允许一组命令以固定的和预定的次数重复,循环的一般形式为: for variable = expression   statements end 例:(%一个简单的for循环) for i=1:10;   y(i)=i; end; y       %显示y的结果 y =   

14、 1   2   3   4   5   6   7   8   9  10 为了得到最大的速度,在for循环被执行之前,应预先分配数组。例如前面所考虑的第一种情况,在for循环内每执行一次命令,向量y的维数增加1。这样就使得MATLAB每通过一次循环对y分配更多的内存,这当然要花费一定的时间。  在实际的对图像处理过程中,由于我们读出的图像是unit8型,而在MATLAB的矩阵运算中要求所有的运算变量为double型(双精度型)。所以读出的图像数据不能直接进行相加求平均,因此必须使用一个函数将图像数据转换成双精度型数据。MATLAB中提供了这样的函数,如 im2double函数,其语法格

15、式为:    I2 = im2double(I1) 其中I1是输入的图像数据,它可能是uint8或uint16型数据,通过函数的变化输出I2为一个double型数据,这样两图像数据就可以方便的进行相加等代数运算  作为一个示例,现将刚刚显示的加有噪声的图像进行相加求平均以消除图像的噪声。在图像中我们给图像加的是均值为0,方差为0.02的高斯噪声,将图像相加了一百遍,再求其平均值。 例: 图像加噪声再通过多次相加求平均的方法祛除噪声 程序如下: I=imread('eight.tif'); J=imnoise(I,'gaussian',0,0.02); subplot(1,2,1

16、),imshow(I),title('原图像'); subplot(1,2,2),imshow(J),title('加噪声后图像'); K=zeros(242,308); for i=1:100; J=imnoise(I,'gaussian',0,0.02);   J1=im2double(J);   K=K+J1; end; K=K/100;  %求图像的平均 figure;imshow(K);title('相加求平均后的图像'); 效果图如下: 原图像 加噪声后图像 Imresize函数的语法格式为

17、 B = imresize(A,m,method) 这里参数method用于指定插值的方法,可选用的值为'nearest'(最邻近法),'bilinear'(双线性插值),'bicubic'(双三次插值),默认为'nearest'。 B = imresize(A,m,method)返回原图A的m倍放大的图像(m小于1时效果是缩小)。 例:(将图像放大) 执行该程序的命令: I=imread('eight.tif'); J = imresize(I,1.25); imshow(I),title('原图像') figure,imshow(J),title('放大后的图像')

18、该程序的效果图如下: 原图象 放大后图像 在工具箱中的函数imrotate可用上述三种方法对图像进行插值旋转,默认的插值方法也是最邻近插值法。 Imrotate的语法格式为:  B = imrotate(A,angle,method)     函数imrotate对图像进行旋转,参数method用于指定插值的方法,,可选用的值为'nearest'(最邻近法),'bilinear'(双线性插值),'bicubic'(双三次插值),默认为'nearest'。一般说来旋转后的图像会比原图大,超出原图部分值为0。 例:(将图像旋转) 执行该程序的命令: I=imread(

19、'eight.tif'); J=imrotate(I,30,'bilinear'); imshow(I);title('原图像') figure,imshow(J),title('旋转后的图像') 该程序效果图如下: 原图像 旋转后图像 结束语 本文主要介绍了图像的基本运算,包括点运算、代数运算和几何运算,举了相应的Matlab实例,并对其相应的应用做了介绍。比如说代数运算可用于去除图像的噪声等等。其中的几何运算包括两个步骤,一个是空间变换,一个是重采样。然后简单介绍了下常用的三种灰度插值方法—最近邻法、双线性插值法和三次内插法,比较了优缺点。最后演示了图像的

20、缩放和图像的旋转。充分体现了在Matlab中对数字图像用图像运算进行处理更方便、精度提高和灵活性好。 参考文献: [1]冈萨雷斯(美).阮秋琦,阮宇智译.数字图像处理(第二版)[M].北京:电子工业出版社,2009. [2]冈萨雷斯(美).阮秋琦,阮宇智译.数字图像处理(MATLAB版)[M].北京:电子工业出版社,2009. [3]张志涌.MATLAB教程[M].北京:北京航空航天大学出版社,2009. [4]吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601

21、612. [5]刘耀林,邱飞岳,王丽萍,等.基于GPU的图像快速旋转算法的研究及实现.计算机工程与科学,2008,30(6):48-50. [6]数字图像处理、压缩与识别技术[M].李在铭编著,成都:电子科技大学出版社,2000. [7]数字图像处理疑难解析[M] .赖剑煌,冯国灿.北京:机械工业出版社,2005. [8]图象处理和分析[M]. 章毓晋.北京:清华大学出版社,1999. [9]数字图像处理[M]。朱志刚,石定机等译.北京:电子工业出版社,1999,8 [10]一种直方图规定化的组映射算法[J]. 韩殿元,陈子富.潍坊 学院学报,2005,5(6). [11]图像工程(上册):图像处理[M]. 章毓晋.北京:清华大学出版社,2006 15

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服