ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:197.01KB ,
资源ID:11037820      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11037820.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(几何新概念题目类型.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

几何新概念题目类型.doc

1、 新概念题目类型 一.解答题(共8小题) 1.(2012•绍兴)联想三角形外心的概念,我们可引入如下概念. 定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图1,若PA=PB,则点P为△ABC的准外心. 应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数. 探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长. 2.(2012•舟山)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n]

2、. (1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=      ;直线BC与直线B′C′所夹的锐角为      度; (2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值; (3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值. 3.(2011•宁波)阅读下面的情景对话,然后

3、解答问题: (1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题? (2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c; (3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE. ①求证:△ACE是奇异三角形; ②当△ACE是直角三角形时,求∠AOC的度数. 4.(2013•仙桃)一张矩形纸片,剪下一个正方形,剩下

4、一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形. (1)判断与操作: 如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由. (2)探究与计算: 已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值. (3)归纳与拓展: 已知矩形ABCD

5、两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果). 5.(2014•舟山)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”. (1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数. (2)在探究“等对角四边形”性质时: ①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论; ②由此小红

6、猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例. (3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长. 6.(2014•慈溪市模拟)定义:如果一个等腰直角三角形的一个顶点为矩形的顶点,另两个顶点分别在矩形的边上,且任何两个顶点都不在矩形的同一边上,我们这样的等腰直角三角形为矩形的“内接优三角形”.如图,矩形ABCD中,点E、F分别在边CD

7、BC上,∠AEF=90°,AE=EF,△AEF为矩形ABCD的内接优三角形. (1)正方形是否存在内接优三角形? (2)已知△AEF为矩形ABCD的内接优三角形. ①若AD=4,AB=7,求AF的长; ②设AB=a,AD=b(a>b),问是否存在斜边长为b的内接优三角形?若存在,请求出的值;若不存在,请说明理由; ③若△CEF的外接圆与直线AB相切,求此时的值. 7.(2013•慈溪市模拟)某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的

8、问题.首先定义了一个新的概念:如图(1)△ABC中,M是BC的中点,P是射线MA上的点,设=k,若∠BPC=90°,则称k为勾股比. (1)如图(1),过B、C分别作中线AM的垂线,垂足为E、D.求证:CD=BE. (2)①如图(2),当=1,且AB=AC时,AB2+AC2=      BC2(填一个恰当的数). ②如图(1),当k=1,△ABC为锐角三角形,且AB≠AC时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由; ③对任意锐角或钝角三角形,如图(1)、(3),请用含勾股比k的表达式直接表示AB2+AC2与BC2的关系(写出锐角或钝角三角形中的一个即可)

9、. 一.解答题(共8小题) 1. ∠APB=90°; PA=2或. 2.(1)3:1 60 (2)∠BAB′=60° n=2 (3)θ==72 n=. 3.(1)真命题 (2)a:b:c=1::; (3)∠AOC的度数为60°或120° 4.(3)b:c的值为,,,,,,,, 5.(1)∠D=∠B=80°,∴∠C=360°﹣70°﹣80°﹣80°=130°; (2)∠ADC=∠ABC=90° AC===2 ∠BCD=∠DAB=60° AC=

10、2 6.(1)根据中点的定义可得BM=CM,然△BME和△CMD全等, (2)①②根据直角三角形斜边上的中线等于斜边的一半可得PD=BC,然后求出BC=AD,①AB2+AC2= 2.5 BC2;②结论仍然成立 ③设EM=DM=a,表示出AE、AD,然后根据勾股定理列式表示出AB2、AC2,再求出AB2+AC2,再次利用勾股定理列式求出BE2+x2=CD2+x2=BC2,然后根据勾股比用PM表示出AM,再根据直角三角形斜边上的中线等于斜边的一半可得PM=BC,然后分△ABC是锐角三角形与钝角三角形两种情况代入进行计算即可得解. 若△ABC是锐角三角形 AB2+AC2=BC2; 若△ABC是钝角三角形, AB2+AC2=BC2. 第7页(共7页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服