ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:45.51KB ,
资源ID:11027917      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11027917.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(初中数学竞赛标准教程及练习19:因式分解.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学竞赛标准教程及练习19:因式分解.doc

1、中考数学复习资料,精心整编吐血推荐,如若有用请打赏支持,感激不尽! 初 中数学竞赛精品标准教程及练习(19) 因式分解 一、内容提要 和例题 我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。下面再介紹两种方法 1. 添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式 例1因式分解:①x4+x2+1 ②a3+b3+c3-3abc ①分析:x4+1若添上2x2可配成完全平方公式 解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x) ②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2

2、 解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2    =(a+b)3+c3-3ab(a+b+c) =(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-ac-bc) 例2因式分解:①x3-11x+20  ② a5+a+1 ① 分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这里16是完全平方数) ② 解:x3-11x+20=x3-16

3、x+5x+20=x(x2-16)+5(x+4) =x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5) ③ 分析:添上-a2 和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式 解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1 =a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1) 2. 运用因式定理和待定系数法 定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a  ⑵若两个多项式相等,则它们同类项的系数相等。 例3因式分解:①x3-5x2+9x-6 ②

4、2x3-13x2+3 ①分析:以x=±1,±2,±3,±6(常数6的约数)分别代入原式,若值为0,则可找到一次因式,然后用除法或待定系数法,求另一个因式。 解:∵x=2时,x3-5x2+9x-6=0,∴原式有一次因式x -2, ∴x3-5x2+9x-6=(x -2)(x2-3x+3,) ②分析:用最高次项的系数2的约数±1,±2分别去除常数项3的约数 ±1,±3得商±1,±2,±,±,再分别以这些商代入原式求值, 可知只有当x=时,原式值为0。故可知有因式2x-1 解:∵x=时,2x3-13x2+3=0,∴原式有一次因式2x-1,    设2x3-13x2+3=(2x-1)(x

5、2+ax-3), (a是待定系数) 比较右边和左边x2的系数得 2a-1=-13, a=-6 ∴2x3-13x+3=(2x-1)(x2-6x-3)。 例4因式分解2x2+3xy-9y2+14x-3y+20 解:∵2x2+3xy-9y2=(2x-3y)(x+3y),  用待定系数法,可设 2x2+3xy-9y2+14x-3y+20=(2x-3y+a)(x+3y+b),a,b是待定的系数, 比较右边和左边的x和y两项 的系数,得   解得 ∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5) 又解:原式=2x2+(3y+14)x-(9y2+3y-20)

6、 这是关于x的二次三项式  常数项可分解为-(3y-4)(3y+5),用待定系数法,可设 2x2+(3y+14)x-(9y2+3y-20)=[mx-(3y-4)][nx+(3y+5)] 比较左、右两边的x2和x项的系数,得m=2, n=1 ∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5) 三、练习19 1. 分解因式:①x4+x2y2+y4   ②x4+4    ③x4-23x2y2+y4 2. 分解因式: ①x3+4x2-9   ②x3-41x+30 ③x3+5x2-18  ④x3-39x-70 3. 分解因式:①x

7、3+3x2y+3xy2+2y3      ②x3-3x2+3x+7        ③x3-9ax2+27a2x-26a3    ④x3+6x2+11x+6        ⑤a3+b3+3(a2+b2)+3(a+b)+2 4. 分解因式:①3x3-7x+10  ②x3-11x2+31x-21 ③x4-4x+3 ④2x3-5x2+1 5. 分解因式:①2x2-xy-3y2-6x+14y-8 ②(x2-3x-3)(x2+3x+4)-8 ③(x+1)(x+2)(x+3)(x+4)-48 ④(2x-7)(2x+5)(x2-9)-91 6.分解因式: ①x2y

8、2+1-x2-y2+4xy  ②x2-y2+2x-4y-3 ③x4+x2-2ax -a+1 ④(x+y)4+x4+y4 ⑤(a+b+c)3-(a3+b3+c3) 7. 己知:n是大于1的自然数  求证:4n2+1是合数 8.己知:f(x)=x2+bx+c, g(x)=x4+6x2+25, p(x)=3x4+4x2+28x+5    且知f(x)是g(x)的因式,也是p(x)的因式 求:当x=1时,f(x)的值 练习19参考答案: 1. 添项,配成完全平方式(仿例3) 2.拆中项,仿例1 3.

9、拆项,配成两数和的立方 ①原式=(x+y)3+y3……③原式=(x-3a)3+a3 ⑤ 原式=(a+1)3+(b+1)3 4. 用因式定理,待定系数法,仿例5,6 ④x=时,原式=0,有因式2x-1 5. 看着是某代数式的二次三项式,仿例7  ④原式=(2x-7)(x+3)(2x-5)(x-3)-91=(2x2-x-8)(2x2-x-28)=…… 6. 分组配方 ③原式=(x2+1)2-(x+a)2…… ④把原式用乘法展开,合并,再分解 ⑤以a=-b代入原式=0,故有因式a+b 7. 可分解为两个非1的正整数的积 8. 提示g(x),p(x)的和,差,倍仍有f(x)的因式,  3g(x)-p(x)=14(x2-2x-5)与f(x)比较系数……,f(1)=4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服