ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:597.90KB ,
资源ID:10836621      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10836621.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(中考数学一次函数专题.doc)为本站上传会员【知****运】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

中考数学一次函数专题.doc

1、一次函数考点分析与知识点汇总 考点分析 一次函数及其图像是初中代数的重要内容,也是中考的重点考查内容。一次函数的考查有多种角度及形式,尤其近几年新型题的不断出现,加大了对学生的能力的考查力度。现以部分中考题为例介绍一次函数的几个考查点。希望对同学们的学习有所帮助。 一、 知识立意型(基础知识考查) 1、 考定义 2、 求解析式 3、 考查函数的性质 二、 能力立意型: 1、 阅读理解能力 2、 应用能力 3、 图形变换的能力 4、综合能力 一次函数知识点汇总 l 知识点一 一次函数的定义 一般地,形如(,是常数,)的函数,叫做一次函数,当时,即,这时

2、即是前一节所学过的正比例函数. ⑴一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当,时,仍是一次函数. ⑶当,时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. l 知识点二 一次函数的图象及其画法 ⑴一次函数(,,为常数)的图象是一条直线. ⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可. ①如果这个函数是正比例函数,通常取,两点; ②如果这个函数是一般的一次函数(),通常取,,即直线与两坐标轴的交点. ⑶由函数图象的意义知,满足函数关系式的点

3、在其对应的图象上,这个图象就是一条直线,反之,直线上的点的坐标满足,也就是说,直线与是一一对应的,所以通常把一次函数的图象叫做直线:,有时直接称为直线. l 知识点三 一次函数的性质 ⑴当时,一次函数的图象从左到右上升,随的增大而增大; ⑵当时,一次函数的图象从左到右下降,随的增大而减小. l 知识点四 一次函数的图象、性质与、的符号 ⑴ 一次 函数 , 符号 图象 性质 随的增大而增大 随的增大而减小 ⑵一次函数中,当时,其图象一定经过一、三象限;当时,其图象一定经过二、四象限. 当时

4、图象与轴交点在轴上方,所以其图象一定经过一、二象限;当时,图象与轴交点在轴下方,所以其图象一定经过三、四象限. 反之,由一次函数的图象的位置也可以确定其系数、的符号. l 知识点五 用待定系数法求一次函数的解析式 ⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法. ⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式; ②将的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组; ③解方程(组),得到待定系数的值; ④将求出的待定系数代回所求的函数解

5、析式中,得到所求的函数解析式. 考查一:点的坐标 方法: x轴上的点纵坐标为0,y轴上的点横坐标为0; 若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 例1:若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。 举一反三: 【变式1】若点A(m,n)在第二象限,则点(|m|,-n)在第____象限; 【变式2】若点P(2a-1,2-3b)是第二象限的点,

6、则a,b的范围为______________________。 小结与反思:______________________________________________________ ______________________________________________________ 考查二:关于点的距离的问题 方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示; 任意两点的距离为; 若AB∥x轴,则的距离为; 若AB∥y轴,则的距离为; 点到原点之间的距离为

7、 例:两点(3,-4)、(5,a)间的距离是2,则a的值为__________; 举一反三: 【变式1】已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为___________. 【变式2】点D(a,b)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________; 小结与反思:______________________________________________________ _______________

8、 考查三:正比例函数与一次函数定义 方法:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。 ☆A与B成正比例óA=kB(k≠0) 例:如果函数是正比例函数,那么( ).   A.m=2或m=0    B.m=2    C.m=0    D.m=1 举一反三: 【变式1】已知y-3与x成正比例,且x=2时,y=7.   (

9、1)写出y与x之间的函数关系式;   (2)当x=4时,求y的值;   (3)当y=4时,求x的值. 【变式2】已知一次函数     (1)当m取何值时,y随x的增大而减小?     (2)当m取何值时,函数的图象过原点? 小结与反思:______________________________________________________ ______________________________________________________ 考查四:待定系数法求函数解析式  方法:依据两个独立的条件确

10、定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。 ☆ 已知是直线或一次函数可以设y=kx+b(k≠0); ☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。 例:判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.   分析:由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明第三点在此直线上;若不成立,说明不在此直线上.    举一反三:   【 变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长

11、度为6cm,挂4kg的重物时,弹簧的长度是7.2cm,求这个一次函数的表达式. 分析:题中并没给出一次函数的表达式,因此应先设一次函数的表达式y=kx+b,再由已知条件可知,当x=0时,y=6;当x=4时,y=7.2.求出k,b即可.    【变式2】已知直线y=2x+1.   (1)求已知直线与y轴交点M的坐标;   (2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.         小结与反思:______________________________________________________

12、 ______________________________________________________ 考查五:函数图象及其应用 一次 函数 , 符号 图象 性质 随的增大而增大 随的增大而减小 ☆一次函数y=kx+b(k≠0)中k、b的意义: k(称为斜率)表示直线y=kx+b(k≠0) 的倾斜程度; b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的 ,也表示直线在y轴上的 。 ☆同一平面内,不重合的两直线 y=k1x+b

13、1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y轴上同一点。 ☆特殊直线方程: X轴 : 直线 Y轴 : 直线 与X轴平行的直线 与Y轴平行的直线 一、 三象限角平分线

14、 二、四象限角平分线 例1:(模拟卷二.21)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式. (1)小明家某月用电120度,需交电费 元; (2) 求第二档每月电费y(元)与用电量x(度)之间的函数关系式; (3)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值. 举一反三:   【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s与

15、时间t的函数关系,求它们行进的速度关系。                          【变式2】(2011四川内江)小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示。放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )   A.14分钟    B.17分钟    C.18分钟    D.20分钟                     【变式3】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程

16、其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如图所示:                     根据图象解答下列问题:   (1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?   (2)已知洗衣机的排水速度为每分钟19升.      ①求排水时y与x之间的关系式;      ②如果排水时间为 2分钟,求排水结束时洗衣机中剩下的水量.      小结与反思:______________________________________________________ _________________

17、 考查六:一次函数的性质 方法:⑴当时,一次函数的图象从左到右上升,随的增大而增大; ⑵当时,一次函数的图象从左到右下降,随的增大而减小 例1:(模拟卷四.6)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是(  ) BB C D A 举一反三: 【变式1】已知关于x的一次函数.   (1)m为何值时,函数的图象经过原点?   (2)m为何值时,函数的图象经过点(0,-2)?   (3)m为何值时,函数的图象和直线y=-x平行?

18、  (4)m为何值时,y随x的增大而减小?    【变式2】函数在直角坐标系中的图象可能是( ).      【变式3】一次函数 y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是__________。 小结与反思:______________________________________________________ ______________________________________________________ 考查七:平移 方法:直线y=kx+b与y轴交点为(0,b

19、直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。 直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。 例:把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________。 举一反三: 【变式1】 过点(2,-3)且平行于直线y=-3x+1的直线是___________. 【变式2】直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=___________

20、 小结与反思:______________________________________________________ ______________________________________________________ 考查八:交点问题及直线围成的面积问题 方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解; 复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形); 往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高; 例:(模拟卷八)如图,直线与x轴、y轴分别交于点A和

21、点B,点C在直线AB上,且点C的纵坐标为-1,点D在反比例函数的图象上,CD平行于y轴,,则k的值为________. 举一反三: 【变式1】如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6; (1) 求△COP的面积; (2) 求点A的坐标及p的值; (3) 若△BOP与△DOP的面积相等,求直线BD的函数解析式。 【变式2】已知:经过点(-3,-2),它与x轴,

22、y轴分别交于点B、A,直线经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D     (1)求直线的解析式;     (2)若直线与交于点P,求的值。 【变式3】如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。   小结与反思:______________________________________________________ ___________________________________________________

23、 考查九:一次函数综合 例:已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB (1) 求两个函数的解析式;(2)求△AOB的面积; 举一反三: 【变式1】在长方形ABCD中,AB=3cm,BC=4cm,点P沿边按A→B→C→D的方向向点D运动(但不与A,D两点重合)。求△APD的面积y()与点P所行的路程x(cm)之间的函数关系式及自变量的取值范围。                       【变式2】如图,直线与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标

24、为(-6,0)。   (1)求的值;   (2)若点P(,)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积      S与x的函数关系式,并写出自变量x的取值范围;   (3)探究:在(2)的条件下,当点P运动到什么位置时,△OPA的面积为,并说明理由。                   小结与反思:______________________________________________________ ______________________________________________________

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服