ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:653.51KB ,
资源ID:10820877      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10820877.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(椭圆经典例题(带答案-适用于基础性巩固).doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

椭圆经典例题(带答案-适用于基础性巩固).doc

1、椭圆标准方程典型例题(参考答案) 例1 已知椭圆的一个焦点为(0,2)求的值. 解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2 已知椭圆的中心在原点,且经过点,,求椭圆的标准方程. 解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 解: (1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,,有, 故

2、其方程为. (2)设,,则. ① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4 已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或. 例5 已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限.由余弦定理知: ·.① 由椭圆定义知:

3、②,则得 . 故 . 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 例7 已知椭圆,(1)求过点且被平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程; (3)过引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点、,为原点,且有直线、斜率满足, 求线段中点的轨迹方程. 解:设弦两端点分别为,,线段的中点,则 ①-②得. 由题意知,则上

4、式两端同除以,有, 将③④代入得.⑤ (1)将,代入⑤,得,故所求直线方程为: . ⑥ 将⑥代入椭圆方程得,符合题意,为所求. (2)将代入⑤得所求轨迹方程为: .(椭圆内部分) (3)将代入⑤得所求轨迹方程为: .(椭圆内部分) (4)由①+②得 : , ⑦, 将③④平方并整理得 , ⑧, , ⑨ 将⑧⑨代入⑦得: , ⑩ 再将代入⑩式得: , 即 . 例8 已知椭圆及直线.(1)当为何值时,直线与椭圆有公共点? (2)若

5、直线被椭圆截得的弦长为,求直线的方程. 解:(1)把直线方程代入椭圆方程得 , 即.,解得. (2)设直线与椭圆的两个交点的横坐标为,,由(1)得,. 根据弦长公式得 :.解得.方程为. 例9 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程. 解:如图所示,椭圆的焦点为,. 点关于直线的对称点的坐标为(-9,6),直线的方程为. 解方程组得交点的坐标为(-5,4).此时最小. 所求椭圆的长轴:,∴,又, ∴.因此,所求椭圆的方程为. 例10 已知方程表示椭圆,求的取值范围. 解:由得,且.∴满足条件的的取值范围是,

6、且. 例11 已知表示焦点在轴上的椭圆,求的取值范围. 解:方程可化为.因为焦点在轴上,所以. 因此且从而. 例12 求中心在原点,对称轴为坐标轴,且经过和两点的椭圆方程. 解:设所求椭圆方程为(,).由和两点在椭圆上可得 即所以,.故所求的椭圆方程为. 例13 知圆,从这个圆上任意一点向轴作垂线段,求线段中点的轨迹. 解:设点的坐标为,点的坐标为,则,. 因为在圆上,所以. 将,代入方程得.所以点的轨迹是一个椭圆. 例14 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长. 解:(法1)利用直线与椭圆相交的弦长公

7、式求解. .因为,,所以.因为焦点在轴上, 所以椭圆方程为,左焦点,从而直线方程为. 由直线方程与椭圆方程联立得:.设,为方程两根,所以,,, 从而. (法2)利用椭圆的定义及余弦定理求解. 由题意可知椭圆方程为,设,,则,. 在中,,即; 所以.同理在中,用余弦定理得,所以. (法3)利用焦半径求解. 先根据直线与椭圆联立的方程求出方程的两根,,它们分别是,的横坐标. 再根据焦半径,,从而求出. 例15 椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为A.4   B.2   C.8   D. 解:如图所示,设椭圆的另一个焦

8、点为,由椭圆第一定义得,所以, 又因为为的中位线,所以,故答案为A. 例16 在面积为1的中,,,建立适当的坐标系,求出以、为焦点且过点的椭圆方程. 解:以的中点为原点,所在直线为轴建立直角坐标系,设. 则∴即∴得 ∴所求椭圆方程为 例17 已知是直线被椭圆所截得的线段的中点,求直线的方程. 解:方法一:设所求直线方程为.代入椭圆方程,整理得  ① 设直线与椭圆的交点为,,则、是①的两根,∴ ∵为中点,∴,.∴所求直线方程为. 方法二:设直线与椭圆交点,.∵为中点,∴,. 又∵,在椭圆上,∴,两式相减得, 即.∴.∴直线方程为. 方法三:设所求直线与椭圆的一个交点为,另一个交点. ∵、在椭圆上,∴  ①。      ② 从而,在方程①-②的图形上,而过、的直线只有一条,∴直线方程为. 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服