ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:160.01KB ,
资源ID:10800407      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10800407.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(菱形单元测试题打印版.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

菱形单元测试题打印版.doc

1、 菱 形 单 元 测 试 题 一、选择题 1.菱形具有而一般平行四边形不具有的性质是(  ) A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直 2.如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于(  ) A.3cm B.4cm C.2.5cm D.2cm 3.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为(  ) A.52c

2、m B.40cm C.39cm D.26cm 4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是(  ) A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC 5.如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC和CD的中点,连接AE、EF、AF,则△AEF的周长为( ) A. B. C. D.3. 6.如图,在菱形A

3、BCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为(  ) A.2 B.3 C. D.2 7.如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于(  ) A.18 B.16 C.15 D.14 8.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为(  ) A.20m

4、B.25m C.30m D.35m 9.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是(  ) A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60° 10.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于(  ) A. B. C.5 D.4 二、填空题 1.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为

5、 . 2.如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为 . 3.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件 使其成为菱形(只填一个即可). 4.如图,将两张长为9,宽为3的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的面积有最小值9,那么菱形面积的最大值是 . 5.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则

6、OE= . 6.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为 7.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为 . 8.如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是 . 三、解答题 1.已知:如图,在菱形ABCD中,点E、F分

7、别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF. 2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE. 3.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证: (1)∠CEB=∠CBE; (2)四边形BCED是菱形. 4.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F. (1)求证:四边形ECBF是平行四边形; (2)当∠A=30°时,求证:四边形ECBF是菱

8、形. 5.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD (1)求∠AOD的度数; (2)求证:四边形ABCD是菱形. 6.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点. (1)求证:△ABE≌△CDF; (2)当四边形AECF为菱形时,求出该菱形的面积. 参考答案 一、选择题. 1.D 2.A 3.A 4.C 5.B 6.D 7.B 8.C 9.B 10.A 二、填空题 1.30 2.6 3.AC⊥

9、BD 或∠AOB=90°或AB=BC 4.15 5. 6. 7.105°或45°,8. 三、解答题 1. 证明:∵四边形ABCD是菱形, ∴AD=CD, ∵点E、F分别为边CD、AD的中点, ∴AD=2DF,CD=2DE, ∴DE=DF, 在△ADE和△CDF中, , ∴△ADE≌△CDF(SAS). 2. 证明:连接AC, ∵四边形ABCD是菱形, ∴AC平分∠DAE,CD=BC, ∵CE⊥AB,CF⊥AD, ∴CE=FC,∠CFD=∠CEB=90°. 在Rt△CDF与Rt△CBE中, , ∴Rt△CDF≌Rt△CBE(HL), ∴DF=B

10、E. 3. 证明;(1)∵△ABC≌△ABD, ∴∠ABC=∠ABD, ∵CE∥BD, ∴∠CEB=∠DBE, ∴∠CEB=∠CBE. (2))∵△ABC≌△ABD, ∴BC=BD, ∵∠CEB=∠CBE, ∴CE=CB, ∴CE=BD ∵CE∥BD, ∴四边形CEDB是平行四边形, ∵BC=BD, ∴四边形CEDB是菱形. 4. 证明:(1)∵D,E分别为边AC,AB的中点, ∴DE∥BC,即EF∥BC. 又∵BF∥CE, ∴四边形ECBF是平行四边形. (2)∵∠ACB=90°,∠A=30°,E为AB的中点, ∴CB=AB,CE=AB. ∴CB=C

11、E. 又由(1)知,四边形ECBF是平行四边形, ∴四边形ECBF是菱形. 5. (1)∵AC、BD分别是∠BAD、∠ABC的平分线, ∴∠DAC=∠BAC,∠ABD=∠DBC, ∵AE∥BF, ∴∠DAB+∠CBA,=180°, ∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°, ∴∠AOD=90°; (2)证明:∵AE∥BF, ∴∠ADB=∠DBC,∠DAC=∠BCA, ∵AC、BD分别是∠BAD、∠ABC的平分线, ∴∠DAC=∠BAC,∠ABD=∠DBC, ∴∠BAC=∠ACB,∠ABD=∠ADB, ∴AB=BC,AB=AD ∴AD=BC, ∵AD∥BC, ∴四边形ABCD是平行四边形, ∵AD=AB, ∴四边形ABCD是菱形. 6. (1)证明:∵在▱ABCD中,AB=CD, ∴BC=AD,∠ABC=∠CDA. 又∵BE=EC=BC,AF=DF=AD, ∴BE=DF. ∴△ABE≌△CDF. (2)解:∵四边形AECF为菱形时, ∴AE=EC. 又∵点E是边BC的中点, ∴BE=EC,即BE=AE. 又BC=2AB=4, ∴AB=BC=BE, ∴AB=BE=AE,即△ABE为等边三角形, ▱ABCD的BC边上的高为=, ∴菱形AECF的面积为2. 7

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服