ImageVerifierCode 换一换
格式:PPT , 页数:41 ,大小:2.74MB ,
资源ID:10789909      下载积分:12 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10789909.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(微积分基本定理.ppt)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

微积分基本定理.ppt

1、剖析题型 提炼方法,实验解读,构建知识网络 强化答题语句,探究高考 明确考向,1.6,微积分基本定理,第一章导数及其应用,学习目标,1.,直观了解并掌握微积分基本定理的含义,.,2.,会利用微积分基本定理求函数的积分,.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一微积分基本定理,(,牛顿,莱布尼茨公式,),梳理,(1),微积分基本定理,条件:,f,(,x,),是区间,a,,,b,上的连续函数,并且,;,F,(,x,),f,(,x,),F,(,b,),F,(,a,),F,(,b,),F,(,a,),(2),常见的原函数与被积函数关系,知识点二定积分和曲边梯形面积的关系,思考,定

2、积分与曲边梯形的面积一定相等吗?,答案,当被积函数,f,(,x,),0,恒成立时,定积分与曲边梯形的面积相等,若被积函数,f,(,x,),0,不恒成立,则不相等,.,梳理,设曲边梯形在,x,轴上方的面积为,S,上,,在,x,轴下方的面积为,S,下,,则,S,上,S,下,S,上,S,下,0,1.,若,F,(,x,),f,(,x,),,则,F,(,x,),唯一,.(,),2.,微积分基本定理中,被积函数,f,(,x,),是原函数,F,(,x,),的导数,.(,),3.,应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数,.(,),思考辨析 判断正误,题型探究,类型一求定积分,命题

3、角度,1,求简单函数的定积分,例,1,计算下列定积分,.,解答,(1,e,1,),(0,e,0,),e.,解答,(ln 2,3sin 2),(ln 1,3sin 1),ln 2,3sin 2,3sin 1.,解答,(3),解答,解,(,x,3)(,x,4),x,2,7,x,12,,,反思与感悟,(1),当被积函数为两个函数的乘积或乘方形式时一般要转化为和的形式,便于求得原函数,F,(,x,).,(2),由微积分基本定理求定积分的步骤,第一步:求被积函数,f,(,x,),的一个原函数,F,(,x,),;,第二步:计算函数的增量,F,(,b,),F,(,a,).,解答,跟踪训练,1,计算下列定积分

4、解答,sin,x,1.,(2),解,解答,解答,命题角度,2,求分段函数的定积分,解答,反思与感悟,分段函数定积分的求法,(1),利用定积分的性质,转化为各区间上定积分的和计算,.,(2),当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算,.,解析,答案,2e,2,e,0,e,1,e,1,e,0,2e,2.,解答,类型二利用定积分求参数,解析,答案,3,解得,t,3,或,2,,,t,0,,,t,3.,解析,答案,解答,引申探究,解答,反思与感悟,(1),含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提,.,

5、2),计算含有参数的定积分,必须分清积分变量与被积函数,f,(,x,),、积分上限与积分下限、积分区间与函数,F,(,x,),等概念,.,解析,答案,0,2),f,(,x,),的值域为,0,2).,解析,答案,达标检测,1,2,3,4,5,解析,答案,解得,a,2.,A.5 B.4 C.3 D.2,2.,等于,1,2,3,4,5,解析,答案,1,2,3,4,5,解析,答案,解析,f,(,x,),x,n,mx,的导函数,f,(,x,),2,x,2,,,nx,n,1,m,2,x,2,,解得,n,2,,,m,2,,,f,(,x,),x,2,2,x,,则,f,(,x,),x,2,2,x,,,答案,解

6、析,1,2,3,4,5,解答,1,2,3,4,5,取,F,1,(,x,),2,x,2,2,x,,则,F,1,(,x,),4,x,2,;,取,F,2,(,x,),sin,x,,则,F,2,(,x,),cos,x,.,所以,(2,x,2,2,x,),sin,x,1,2,3,4,5,1.,求定积分的一些常用技巧,(1),对被积函数,要先化简,再求积分,.,(2),若被积函数是分段函数,依据定积分,“,对区间的可加性,”,,分段积分再求和,.,(3),对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分,.,2.,由于定积分的值可取正值,也可取负值,还可以取,0,,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在,x,轴下方的图形面积要取定积分的相反数,.,规律与方法,本课结束,更多精彩内容请登录:,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服