ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:123KB ,
资源ID:10711953      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10711953.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(1.4.1生活中的优化问题举例.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

1.4.1生活中的优化问题举例.doc

1、§1.4.1生活中的优化问题举例 课前预习学案 【预习目标】 预习优化问题,初步体会导数在解决实际问题中的作用。 【预习内容】 1、简述如何利用导数求函数极值和最值? 2、 通常称为优化问题。 3、利用导数解决优化问题的基本思路: 优化问题 【提出疑惑】 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 【学习目标】 1、掌握有关实际问题中的优化问题;

2、 2、形成求解优化问题的思路和方法。 学习重难点:理解导数在解决实际问题时的作用,并利用其解决生活中的一些优化问题。 【学习过程】 (一) 情景问题: 汽油的消耗量(单位:L)与汽车的速度(单位:km/h)之间有一定的关系,汽油的消耗量是汽车速度的函数.根据你的生活经验,思考下面两个问题: ① 是不是汽车的速度越快,汽车的消耗量越大? ②“汽油的使用率最高”的含义是什么? (二) 合作探究、精讲点拨 例1:海报版面尺寸的设计 学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,

3、上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小? 探究1:在本问题中如何恰当的使用导数工具来解决最优需要? 例2.饮料瓶大小对饮料公司利润的影响 ①你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些? ②是不是饮料瓶越大,饮料公司的利润越大? 【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm. 问题:①瓶子的半径多大时,能使每瓶饮料的利润最大? ② 瓶子的半径

4、多大时,每瓶的利润最小? 探究2:换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现? 例3.磁盘的最大存储量问题 计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。 为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。 问题:

5、现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域. ① 是不是越小,磁盘的存储量越大? ② 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)? 探究3:如果每条磁道存储的信息与磁道的长度成正比,那么如何计算磁盘的存储量?此时,是不是r越小,磁盘的存储量越大? (三)反思总结 1、导数在解决实际生活中的问题应用方向是什么? 2、解决优化问题的方法是怎样的? (四)当堂检测 练习:圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省? 变

6、式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省? 课后练习与提高 1、一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖的方盒。 ①试把方盒的体积表示为的函数。 ②多大时,方盒的容积最大? 2、某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价每增加10元,就会有一个房间空闲。如果游客居住房间,宾馆每天需花费20元的各种维护费用,房间定价多少时,宾馆利润最大?

7、 §1.4.1生活中的优化问题举例 【教学目标】 1、会解决使利润最大、用料最省、效率最高等优化问题,深入体会导数在解决实际问题中的作用; 2、提高将实际问题转化为数学问题的能力。 【教学重难点】 教学重点:利用导数解决生活中的一些优化问题. 教学难点:理解导数在解决实际问题时的作用,并利用其解决生活中的一些优化问题。 【教学过程】 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 (二)情景导入、展示目标 教师:我们知道,汽油的消耗量(单位:L)与汽车的速度(单位

8、km/h)之间有一定的关系,汽油的消耗量是汽车速度的函数.根据你的生活经验,思考下面两个问题: ① 是不是汽车的速度越快,汽车的消耗量越大? ②“汽油的使用率最高”的含义是什么? 通过实际问题引发学生思考,进而导入本节课,并给出本节目标。 (三)合作探究、精讲点拨 (1)提出概念 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. (2)引导探究 例1:海报版面尺寸的设计 学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一

9、张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小? 探究1:在本问题中如何恰当的使用导数工具来解决最优需要? 例2.饮料瓶大小对饮料公司利润的影响 ①你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些? ②是不是饮料瓶越大,饮料公司的利润越大? 【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm 问题:①

10、瓶子的半径多大时,能使每瓶饮料的利润最大?  ②瓶子的半径多大时,每瓶的利润最小? 探究2:换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现? 例3.磁盘的最大存储量问题 计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。 为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有

11、相同的比特数。 问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域. ① 是不是越小,磁盘的存储量越大? ② 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)? 探究3:如果每条磁道存储的信息与磁道的长度成正比,那么如何计算磁盘的存储量?此时,是不是r越小,磁盘的存储量越大? 由学生结合已有的知识,提出自己的看法,同伴之间进行交流。老师及时点评指导,最后归纳、总结,讲评。 (四)反馈测评 练习:圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省? 变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与

12、底面半径应怎样选取,才能使所用材料最省? (五)课堂总结 导数在实际生活中的应用方向:主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。 解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路: 解决数学模型 作答 用函数表示的数学问题 优化问题 用导数解决数学问题 优化问题的答案 【作业布置】 发导学案、布置预习。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服