1、第九章不等式与不等式组 9.1.1不等式及其解集 教学目标1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上; 2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。 教学重点:建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程 教学难点:
2、正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 教学过程 1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢? 2、一辆匀速行驶的汽车在11:20时距离A地50千米。要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗? 探究新知 (一)不等式、一元一次不等式的概念 1、 在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。 2、下列式子中哪些是不等式? (1)
3、a+b=b+a(2)-3>-5(3)x≠l(4)x十3>6(5)2m 4、小时75.1千米呢?每小时74千米呢?
问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式>50的解?
问题4,数中哪些是不等式>50的解:
76,73,79,80,74.9,75.1,90,60
你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.
1、 巩固新知下列哪些是不等式x+3>6的解?哪些不是?
-4,-2.5,0,1,2.5,3,3.2,4.8,8, 5、12
2、直接想出不等式的解集,并在数轴上表示出来:(1)x+3>6(2)2x<8(3)x-2>0
拓广探索:比较分析对于问题1还有不同的未知数的设法吗?
学生思考回答:若设去年购买计算机x台,得方程
若设今年购买计算机x台,得方程
解决问题某开山工程正在进行爆破作业.已知导火索燃烧的速度是每秒0.8厘米,人跑开的速度是每秒4米.为了使放炮的工人在爆炸时能跑到100米以外的安全地带,导火索的长度应超过多少厘米?
总结归纳:1、不等式与一元一次不等式的概念;
2、不等式的解与不等式的解集;3、不等式的解集在数轴上的表示.
布置作业 教科书第128页习题9.1第1、2题
6、
教学后记:
9.1.2不等式的性质(一)
教学目标1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;
2、初步体会不等式与等式的异同;3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.
教学重点:理解并掌握不等式的性质。
教学难点:正确运用不等式的性质。
教学过程(师生活动)
提出问题:教师出示天平,并请学生仔细观察老师的操作过程,回答下列 7、问题:
1、天平被调整到什么状态?
2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?
3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?
4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?
探究新知1、用“>”或“<”填空.
(1)-1<3-1+23+2-1-33-3 (2)5>35+a3+a5-a3-a
(3)6>26×52×56×(-5)2×(-5)(4)-2<3(-2)×63×6 (-2)×(-6)3×(一6)
(5)-4>-6(-4)÷2(-6)÷2 (-4)十(-2)(-6)十(-2) 8、
2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.
3、让学生充分发表“发现”,师生共同归纳得出:
不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.
不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.
4、你能说出不等式性质与等式性质的相同之处与不同之处吗?
探究新知
1.下列哪些是不等式x+3>6的解?哪些不是? -4,-2.5,0,1,2.5,3,3.2,4.8,8,12
2、直接想出不等式的解 9、集,并在数轴上表示出来:(1)x+3>6(2)2x<8(3)x-2>0
巩固新知
1.判断
(1)∵a0∴a>0(5)∵-a<0∴a<3
2.填空:(1)∵2a>3a∴a是 数(2)∵∴a是 数(3)∵ax1∴a是 数
3.根据下列已知条件,说出a与b的不等关系,并说明是根据不等式哪一条性质。
(1)a-3>b-3(2)(3)-4a>-4b
总结归纳:在学生自己总结的基础上,教师应强调两点:
1、等式性质与不等式性质的不同之处;2、在运用“不等式性质 10、3"时应注意的问题.
布置作业:教科书第128页习题9.1第4、5题
9.1.2不等式的性质(二)
教学目标:1、会根据“不等式性质1"解简单的一元一次不等式,并能在数轴上表示其解集;
2、学会运用类比思想来解不等式,培养学生观察、分析和归纳的能力;
3、在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯.
教学重点:根据“不等式性质1”正确地解一元一次不等式。
教学难点:根据“不等式性质1”正确地解一元一次不等式。
教学过程(师生活动)
提出问题:小希就读的学校上午第一节课上课时间是8点开始.小希家距学校有2千米,而 11、他的步行速度为每小时10千米.那么,小希上午几点从家里出发才能保证不迟到?
1、 若设小希上午x点从家里出发才能不迟到,则x应满足怎样的关系式?
2、 你会解这个不等式吗?请说说解的过程.
你能把这个不等式的解集在数轴上表示出来吗?
1、 探究新知分组探讨:对上述三个问题,你是如何考虑的?先独立思考然后组内交流,作出记录,最后各组派代表发主。
2、 在学生充分讨论的基础上,师生共同归纳得出:
(1) x应满足的关系是:≤8
(2) 根据“不等式性质1”,在不等式的两边减去,得:x+-≤8-,即x≤
(3) 这个不等式的解集在数轴上表示如下:
我们在表示的点上画实心圆点,意 12、思是取值范围包括这个数。
3、 例题
解下列不等式,并在数轴上表示解集:(1)3x<2x+1(2)3-5x≥4-6x
师生共同探讨后得出:上述求解过程相当于由3x<
2x+1,得3x-2x<1;由3-5x≥4-6x,得-5x+6x≥4-3.这类似于解方程中的“移项”.可见,解不等式也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.
最后由教师完整地板书解题过程.
巩固新知
1、解下列不等式,并在数轴上表示解集:(1)x+5>-1(2)4x<3x-5(3)8x-2<7x+3
2、用不等式表示下列语句并写出解集:(1)x与3的和不小于6;(2)y与1的差不 13、大于0.
解决问题
1、某容器呈长方体形状,长5cm,宽3cm,高10cm.容器内原有水的高度为3cm。现准备继续向它注水.用Vcm,示新注入水的体积,写出V的取值范围。
2、三角形任意两边之差与第三边有着怎样的大小关系?
总结归纳:师生共同归纳本节课所学内容:通过学习,我们学会了简单的一元一次不等式的解法。还明白了生活中的许多实际问题都是可以用不等式的知识去解决的。
布置作业:教科书第128页习题9.1第6题
9.1.2不等式的性质(3)
教学目标1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;
2、对比一元一次不等式的解法与一元一次方程的解法, 14、让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;
3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
教学重点:熟练并准确地解一元一次不等式。
教学难点:熟练并准确地解一元一次不等式。
教学过程(师生活动)
提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.
探究新知
1、在学生充分发表意见 15、的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.
2、例题.
解下列不等式,并在数轴上表示解集:
(1)x≤50 (2)-4x<3 (3)7-3x≤10(4)2x-3<3x+1
分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.
3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?
让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1)(2)-8x<10
2、用不等式表示下列语句并写出解集:(1) 16、x的3倍大于或等于1;(2)y的的差不大于-2.
解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?
总结归纳:围绕以下几个问题:
1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?
让学生自己归纳,教师仅做必要的补充和点拨.
布置作业:教科书第128~129页 习题9.1第6题(3)(4)第10题。
教学后记:
9.2实际问题与一元一次不等式(一)
教学目标1、会 17、从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;
2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;
3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学重点:寻找实际问题中的不等关系,建立数学模型。
教学难点:弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
教学过程(师生活动)
提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠 18、.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?
探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.
2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:
(1)什么情况下,到甲商场购买更优惠?
(2)什么情况下,到乙商场购买更优惠?
(3)什么情况下,两个商场收费相同?
3、我们先来考虑方案:
设购买x台电脑,如果到甲商场购买更优惠.
问题1:如何列不等式?
问题2:如何解这个不等式?
在学生充分讨论的基础上,教师归纳并板 19、书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x
去括号,得
去括号,得:6000+4500x-45004<4800x
移项且合并,得:-300x<1500
不等式两边同除以-300,得:x<5
答:购买5台以上电脑时,甲商场更优惠.
4、让学生自己完成方案(2)与方案(3),并汇报完成情况.
教师最后作适当点评.
解决问题甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施.甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买 20、的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠?
问题1:这个问题比较复杂.你该从何入手考虑它呢?
问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑?
分组活动.先独立思考,再组内交流,然后各组汇报讨论结果.
最后教师总结分析:
1、如果累计购物不超过50元,则在两家商场购物花费是一样的;
2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。
3、如果累计购物超过100元,又有三种情况:
(1)什么情况下,在甲商场购物花费小?
(2)什么情况下,在乙商场购物 21、花费小?
(3)什么情况下,在两家商场购物花费相同?
上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。
总结归纳:通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便.由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案.
布置作业:教科书第134页习题9.2第1题(1)(2)第3题1、2。
教学后记:
9.2实际问题与一元一次 22、不等式(2)
教学目标1、会根据实际问题中的数量关系建立数学模型,学会用去分母的方法解一元一次不等式;
2、通过去分母的方法解一元一次不等式,让学生了解数学中的化归思想,感知不等式与方程的内在联系;
3、结合实际,创设活泼有趣的情境,提高学生的学习兴趣.让他们在活动中获得成功的体验,激发起求知的欲望,增强学习的自信心.
教学重点:列不等式解决问题中如何建立不等式关系,并根据不等关系列出不等式。
教学难点:在实际问题中如何建立不等关系,并根据不等关系列出不等式。
教学过程(师生活动)
复习巩固解下列不等式:
①5x+54<x-1 ②2(1一3x)>3x+20 ③2(一3+x) 23、<3(x+2)④(x+5)<3(x-5)-6
先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法.
提出问题2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%.若到2008年这样的比值要超过70%,那么,2008年北京空气质量良好(二级以上)的天数至少要增加多少天?
解决问题:1、2002年北京空气质量良好的天数是多少?
2、用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?
3、2008年共有多少天?与x有关的哪个式子的值应超过70%?这个式子表示什么?
4、怎样解不等式在学生讨论后,






