ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:664.54KB ,
资源ID:10645727      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10645727.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数列知识点梳理及解题方法归纳.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数列知识点梳理及解题方法归纳.doc

1、数列知识点梳理及解题方法归纳 数列知识点和常用的解题方法归纳 一、 等差数列的定义及性质 (比例中项性质) 0的二次函数) 项,即: 二、等比数列的定义及性质 三、求数列通项公式的常用方法 1、公式法 2、; 3、求差(商)法 解: , , [练习]

2、 4、叠乘法 解: 5、等差型递推公式 [练习] 6、等比型递推公式 [练习] 7、倒数法 , , , 三、 求数列前n项和的常用方法 1、公式法:等差、等比前n项和公式 2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 解

3、 [练习] 3、错位相减法: 4、倒序相加法:把数列的各项顺序倒写,再及原来顺序的数列相加。 4、分组转化法(第一课有例题) [练习] 例1设{an}是等差数列,若a2=3,a=13,则数列{an}前8项的和为( ) A.128 B.80 C.64 D.56 (福建卷第3题) 略解:∵ a2

4、a= a+a=16,∴{an}前8项的和为64,故应选C. 例2 已知等比数列满足,则( ) A.64 B.81 C.128 D.243 (全国Ⅰ卷第7题) 答案:A. 例3 已知等差数列中,,,若,则数列的前5项和等于( ) A.30 B.45 C.90 D.186 (北京卷第7题) 略解:∵a-a=3d=9,∴ d=3,b=,b=a=30,的前5项和等于90,故答案是C. 例4 记等差数列的前项和为,若,则该数列的公差( ) A.2 B.3 C.6 D.7 (广东卷第4题) 略解:∵,故选B. 例5在数列中,,

5、其中为常数,则 .(安徽卷第15题) 答案:-1. 例6 在数列中,, ,则( ) A. B. C. D.(江西卷第5题) 答案:A. 例7 设数列中,,则通项 ___________.(四川卷第16题) 此题重点考查由数列的递推公式求数列的通项公式,抓住中系数相同是找到方法的突破口. 略解:∵ ∴,,,,,,.将以上各式相加,得,故应填+1. 例8 若(x+)n的展开式中前三项的系数成等差数列,则展开式中x4项的系数为( ) A.6 B.7 C.8 D.9 (重庆卷第10题) 答案:B. 使用选择

6、题、填空题形式考查的文科数列试题,充分考虑到文、理科考生在能力上的差异,侧重于基础知识和基本方法的考查,命题设计时以教材中学习的等差数列、等比数列的公式应用为主,如,例4以前的例题.例5考查考生对于等差数列作为自变量离散变化的一种特殊函数的理解;例6、例7考查由给出的一般数列的递推公式求出数列的通项公式的能力;例8则考查二项展开式系数、等差数列等概念的综合运用.重庆卷第1题,浙江卷第4题,陕西卷第4题,天津卷第4题,上海卷第14题,全国Ⅱ卷第19题等,都是关于数列的客观题,可供大家作为练习. 例9 已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上. (Ⅰ)

7、求数列{an}的通项公式; (Ⅱ)若数列{bn}满足b1=1,bn+1=bn+,求证:bn·bn+2<b2n+1. (福建卷第20题) 略解:(Ⅰ)由已知,得an+1-an=1,又a1=1,所以数列{an}是以1为首项,公差为1的等差数列.故an=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知,an=n,从而bn+1-bn=2n,bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=2n-1+2n-2+…+2+1=2n-1.∵. bn•bn+2-b=(2n-1)(2n+2-1)-(2n+1-1)2= -2n<0, ∴ bn·bn+2<b. 对于第(Ⅱ)小题,我们也可以作

8、如下的证明: ∵ b2=1,bn·bn+2- b=(bn+1-2n)(bn+1+2n+1)- b=2n+1·bn+1-2n·bn+1-2n·2n+1=2n(bn+1-2n+1)=2n(bn+2n -2n+1)=2n(bn-2n)=…=2n(b1-2)=-2n<0,∴ bn-bn+2

9、b=1等有限个的验证归纳得到为等差数列的结论,犯“以偏盖全”的错误.第(Ⅱ)小题的“等比差数列”,在高考数列考题中出现的频率很高,求和中运用的“错项相减”的方法,在教材中求等比数列前n项和时给出,是“等比差数列”求和时最重要的方法.一般地,数学学习中最为重要的内容常常并不在结论本身,而在于获得这一结论的路径给予人们的有益启示. 例9、例10是高考数学试卷中数列试题的一种常见的重要题型,类似的题目还有浙江卷第18题,江苏卷第19题,辽宁卷第20题等,其共同特征就是以等差数列或等比数列为依托构造新的数列.主要考查等差数列、等比数列等基本知识,考查转化及化归思想,考查推理及运算能力.考虑到文、理

10、科考生在能力上的差异,及理科试卷侧重于理性思维,命题设计时以一般数列为主,以抽象思维和逻辑思维为主的特点不同;文科试卷则侧重于基础知识和基本方法的考查,以考查具体思维、演绎思维为主. 例11 等差数列的各项均为正数,,前项和为,为等比数列, ,且.(Ⅰ)求及; (Ⅱ)求和:.(江西卷第19题) 略解:(Ⅰ)设的公差为,的公比为,依题意有解之,得或(舍去,为什么?)故. (Ⅱ),∴ . “裂项相消”是一些特殊数列求和时常用的方法. 使用解答题形式考查数列的试题,其内容还往往是一般数列的内容,其方法是研究数列通项及前n项和的一般方法,并且往往不单一考查数列,而是及其他内容相综合,以体现出

11、对解决综合问题的考查力度.数列综合题对能力有较高的要求,有一定的难度,对合理区分较高能力的考生起到重要的作用. 例12 设数列的前项和为,(Ⅰ)求;(Ⅱ)证明: 是等比数列;(Ⅲ)求的通项公式.(四川卷第21题) 略解:(Ⅰ)∵,所以.由知, 得, ①,,. (Ⅱ)由题设和①式知,, 是首项为2,公比为2的等比数列. (Ⅲ) 此题重点考查数列的递推公式,利用递推公式求数列的特定项,通项公式等.推移脚标,两式相减是解决含有的递推公式的重要手段,使其转化为不含的递推公式,从而有针对性地解决问题.在由递推公式求通项公式时,首项是否可以被吸收是易错点.同时,还应注意到题目设问的层层深入,前一问常为解决后一问的关键环节,为求解下一问指明方向. 例13 数列满足(I)求,并求数列的通项公式;(II)设,, ,求使的所有k的值,并说明理由.(湖南卷第20题) 略解:(I) 一般地, 当时, 即 所以数列是首项为0、公差为4的等差数列,因此当时,所以数列是首项为2、公比为2的等比数列,因此故数列的通项公式为 (II)由(I)知, = 于是,. 下面证明: 当时,事实上, 当时, 即又所以当时,故满足的所有k的值为3,4,5. 9 / 9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服