ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:920.51KB ,
资源ID:10644960      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10644960.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数列与解析几何综合—点列问题.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数列与解析几何综合—点列问题.doc

1、专题:数列与解析几何综合——点列问 1.如图,直线与相交于点P.直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…,这样一直作下去,可得到一系列点P1、Q1、P2、Q2,…,点Pn(n=1,2,…)的横坐标构成数列 (Ⅰ)证明; (Ⅱ)求数列的通项公式; (Ⅲ)比较的大小. 【解析】(Ⅰ)证明:设点Pn的坐标是, 由已知条件得点Qn、Pn+1的坐标分别是: 由Pn+1在直线l1上,得 所以 即 (Ⅱ)解:由题设知 又由(Ⅰ)知 , 所以数

2、列 是首项为公比为的等比数列. 从而 (Ⅲ)解:由得点P的坐标为(1,1). 所以 (i)当时,>1+9=10. 而此时 (ii)当时,<1+9=10. 而此时 EX:已知点都在直线上,为直线与轴的交点,数列成等差数列,公差为1. () (1)求数列,的通项公式; (2)求数列的前项和. (3)求证: …… + (2, ) 【解析】 (1) 4分 (2)令==14则它的前项的和=13, = 4分 (3)

3、 2分 4分 2、如图,曲线上的点与x轴的正半轴上的点及原点构成一系列正三角形设正三角形的边长为,n∈N﹡(记为),. (1) 求的值; P1 P2 P3 Q1 Q2 O (2) 求数列{}的通项公式; (3) 求证:当时, . 【解析】 (1)由条件可得,代入曲线得; (2) ∴点代入曲线并整理得 ,于是当时, 即 又当,故 所以数列{}是首项为、公差为的等差数列, ; (3) 由(2)得,当时, , 欲证,只需证,即证, 设,

4、 当时,f(n)递增.而当时,有成立.所以只需验证n=2时不等式成立.------ 13分 事实上,. 综上,原不等式成立. ------------------------------------------14分 3、已知曲线C:, : ()。从上的点作轴的垂线,交于点,再从点作轴的垂线,交于点,设。 (I)求的坐标; (II)求数列的通项公式; (III)记数列的前项和为,求证: 【解析】 (1)由题意得知,, (2),,点的坐标为 在曲线上,, 又在曲线上, (III)……+ ……7分 ==

5、 ……………………………………11分 , 6.(本小题满分15分,其中第一小问4分,第二小问6分,第三小问5分) 过曲线上的点作曲线C的切线l1与曲线C交于,过点P2作曲线C的切线l2与曲线C交于点,依此类推,可得到点列:, (1)求点P2、P3的坐标. (2)求数列的通项公式. (3)记点到直线的距离为, 求证:. 【解析】 (1) …………………………………………4分 (2)曲线C上点处的切线的斜率为, 故得到的方程为 ……………………………………6分 联立方程消去y得: 化简得: 所以:………………8分 由得到点P

6、n的坐标由就得到点的坐标所以: 故数列为首项为1,公比为-2的等比数 列所以: …………………………………………10分 (3)由(2)知: 所以直线的方程为: 化简得: …………………………………………12分 所以 ∴≥ …………………15分 7. 已知曲线C:y=x2(x>0),过C上的点A1(1,1)作曲线C的切线l1交x轴于点B1,再过点B1作y轴的平行线交曲线C于点A2,再过点A2作曲线C的切线l2交x轴于点B2,再过点B2作y轴的平行线交曲线C于交A3,…,依次作下去,记点An的横坐标为an(n∈N*). (

7、1)求数列{an}的通项公式; (2)设数列{an}的前n项和为Sn,求证:anSn≤1; (3)求证:≤ 【解析】 (1)∵曲线C在点An(an,a ∴切线ln的方程是y-a 由于点Bn的横坐标等于点An+1的横坐标an+1,所以,令y=0,得an+1= an。 ∴数列{an}是首项为1,公比为的等比数列.∴an= (2)∵Sn==2(1-),∴anSn=4×(1-). 令t=,则0<t≤,∴anSn=4t(1-t)=-4(t-)2+1. ∴当t=,即n=1时,-4(t-)2+1有最大值1,即anSn≤1. (3)∵Sk≥ak,k∈N*,∴akSk≥

8、a≤ ∵数列{}是首项为1,公比为4的等比数列. ∴≤= 8、(06山东卷)已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,… (1)证明数列{lg(1+an)}是等比数列; (2)设Tn=(1+a1) (1+a2) …(1+an),求Tn及数列{an}的通项; (3)记bn=,求{bn}数列的前项和Sn,并证明Sn+=1. 【解析】 (Ⅰ)由已知, ,两边取对数得 ,即 是公比为2的等比数列. (Ⅱ)由(Ⅰ)知 (*) = 由(*)式得 (Ⅲ) 又 又. 9.(本题满分

9、16分)由原点O向曲线引切线,切于不同于O的点P1(x1,y1),再由点P1引此曲线的切线,切于不同于P1的点P2(x2,y2),如此继续下去,得到点列 {Pn(xn,yn)} . (I)求; (Ⅱ)求证:数列为等比数列; (Ⅲ)令, 为数列{}的前项的和,若对恒成立,求的取值范围. 【解析】 (Ⅰ) --------------------------------------1分 过切点P1(x1,y1)的切线方程为 由于切线过原点O,因此 解得 ----------

10、4分 (Ⅱ) 过切点Pn+1(xn+1,yn+1)的切线方程为 由于切线过点Pn(xn,yn),因此-- ---6分 化简得,∴ -------------------------------8分 即, ∴数列是以为首项,公比为的等比数列。 ---------------9分 (Ⅲ)由(Ⅱ)得= ------------------------------------11分 令,由错位相减可求得 -----------------------------13分 ∴=,由单调性得 ∴ 要使对恒成立, 故 ∴的取值范围是。----------------------------------16分 8

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服