ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:231.89KB ,
资源ID:10602996      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10602996.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(椭圆常结论及其结论(完全版).doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

椭圆常结论及其结论(完全版).doc

1、2椭圆常用结论 一、椭圆的第二定义: 一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率(点与线成对出现,左对左,右对右) 对于,左准线;右准线 对于,下准线;上准线 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称 焦点到准线的距离(焦参数) x O F1 F2 P y A2 A1 B1 B2 二、焦半径 圆锥曲线上任意一点与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。 椭圆的焦半径公式: 焦点在轴(左焦半径),(右焦半径),其中是离心率

2、 焦点在y轴 其中分别是椭圆的下上焦点 焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加 推导:以焦点在轴为例 如上图,设椭圆上一点,在y轴左边. 根据椭圆第二定义,, 则 同理可得 三、通径: 圆锥曲线(除圆外)中,过焦点并垂直于轴的弦,以焦点在轴为例, 弦 坐标:, 弦长度: 四、若是椭圆:上的点.为焦点,若,则的面积为 . 推导:如图 根据余弦定理,得 = = =

3、 = 得 === x O F1 F2 P y A2 A1 B1 B2 五、弦长公式 直线与圆锥曲线相交所得的弦长 直线具有斜率,直线与圆锥曲线的两个交点坐标分别为,则它的弦长 注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为,运用韦达定理来进行计算. 当直线斜率不存在是,则. 六、圆锥曲线的中点弦问题: (1)椭圆中点弦的斜率公式: 设为椭圆弦(不平行轴)的中点,则有: 证明:设,,则有, 两式相减得:整理得:,即,因为是弦的中点,所以,所以

4、 (2)遇到中点弦问题常用“韦达定理”或“点差法”求解。 在椭圆中,以为中点的弦所在直线的斜率k=-; 由(1)得 七、椭圆的参数方程 八、共离心率的椭圆系的方程: 椭圆的离心率是,方程是大于的参数,的离心率也是 我们称此方程为共离心率的椭圆系方程. 例1、已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为____ 例2、如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 例3、已知直线与椭圆相交于、两点,且线段的中点在直线:上,则此椭圆的离心率为_______ 例4、是椭圆的右焦点,为椭圆内一定

5、点,为椭圆上一动点。 (1)的最小值为 (2)的最小值为 分析:为椭圆的一个焦半径,常需将另一焦半径或准线作出来考虑问题。 解:(1) 设另一焦点为,则(-1,0)连, 当是的延长线与椭圆的交点时, 取得最小值为4-。 (2)作出右准线l,作交于,因,,, 所以,,. ∴ ∴ 当、、三点共线时,其和最小,最小值为 例5、求椭圆上的点到直线的距离的最小值. 例6、椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=(  )   A. B. C. D. 例7、在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是(  )   A. B. C. D.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服