ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:348KB ,
资源ID:10602952      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10602952.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(导数知识点与基础习题(含答案).doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

导数知识点与基础习题(含答案).doc

1、一. 导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数在处的瞬时变化率是, 我们称它为函数在处的导数,记作或,即 = 2. 导数的几何意义: 当点趋近于时,函数在处的导数就是切线PT的斜率k,即 3. 导函数 二.导数的计算 1. 基本初等函数的导数公式 2. 导数的运算法则 3. 复合函数求导 和,称则可以表示成为的函数,即为一个复合函数 三.导数在研究函数中的应用 1.函数的单调性与导数: 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数的极值的方法是: (1) 如果在附近的左侧,右侧,那么是极大值; (2) 如果

2、在附近的左侧,右侧,那么是极小值; 4.函数的最大(小)值与导数 函数极大值与最大值之间的关系. 求函数在上的最大值与最小值的步骤 (1) 求函数在内的极值; (2) 将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题 1、已知函数的图象上一点及邻近一点,则等于(  )A.4   B.   C.   D. 2、如果质点按规律运动,则在一小段时间中相应的平均速度为(  ) A.4   B.4.1   C.0.41   D.3 3、如果质点A按规律运动,则在秒的瞬时速度为(  ) A.6    B.18   C.54  D.

3、81 4、曲线在点处的切线斜率为_________,切线方程为__________________. 5、已知函数,若,则__________. 6、计算: (1),求;(2),求; (3),求 7、在自行车比赛中,运动员的位移与比赛时间存在函数关系,(的单位:,的单位:),求: (1)时的; (2)求的速度. 1、函数的导数是(  ) A.   B.   C.   D. 2、曲线在点处切线的倾斜角为(  ) A.1   B.   C.   D. 3、已知曲线在点处的切线与轴平行,则点的坐标是(  ) A.   B.  C.  D. 4、(2009全国卷Ⅱ理

4、曲线在点处的切线方程为____________________. 5、曲线在点处的切线与轴、直线所围成的三角形面积为__________. 6、求下列函数的导数: (1);(2);(3). 7、已知. (1)求在点处的切线方程;(2)求过点的切线方程. 8、函数的导数是(  ) A.  B.  C.  D. 9、已知,那么是(  ) A.仅有最小值的奇函数   B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数   D.非奇非偶函数 10、曲线在点处的切线与坐标轴所围三角形的面积为(  ) A.   B. C. D. 11、已知,若,则实数的值为_____

5、. 12、在处的切线斜率为__________________. 13、求下列函数的导数: (1);(2);(3),. 14、已知 ,求. 1、(09广东文)函数的单调递增区间是(  ) A. B. C. D. 2、设函数在定义域内可导,的图象如图1所示,则导函数可能为(  ) x y O 图1 x y O A x y O B x y O C y O D x 3、若函数在内单调递减,则实数的取值范围是(  ) A.   B. C. D. 4、函数在R上为减函数,则实数的取值范围是

6、. 5、求函数的单调区间. 6、(09北京理)设函数. (1)求曲线在点处的切线方程;(2)求函数的单调区间; (3)若函数在区间内单调递增,求的取值范围. 7、函数的单调递增区间是(  ) A. B. C. D. 8、若函数是上的单调函数,则实数的取值范围是(  ) A. B. C. D. 9.函数的图象大致是(  ) 10、如果函数的导函数的图象如下图所示,给出下列判断: ①函数在区间内单调递增; ②函数在区间内单调递减; ③函数在区间内单调递增; ④当时,函数有极小值; ⑤当时,函数有极大值.

7、 则上述判断中正确的是____________. 11、已知函数,,若,且的图象在点处的切线方程为. (1)求实数,,的值;(2)求函数的单调区间 12、已知函数在上是增函数,求实数的取值范围. 13、已知函数(),的单调区间. 1.C  2.B   3.C   4.4;  5.   6.5;;-1 7.210.5;210   1.C 2.C  3.B  4. 5.   6.; ; 7.;或 8.A 9.B  10.D  11.0或1 12.-3   13.;; 14. 1.D 2.D  3.A  4. 5.增区间,减区间 6.;时,增区间,减区间 时,增区间,减区间; 7.B  8.C   9.B  10.③ 11.;增区间和,减区间   12.   13.时,增区间为 时,在上减,在

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服