ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:45.51KB ,
资源ID:10602608      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10602608.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(数系的扩充和复数的概念说课稿黄新友.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数系的扩充和复数的概念说课稿黄新友.doc

1、 3.1.1《数系的扩充和复数的概念》说课稿 工作室主持人 黄新友 学习目标分析 本节课的《课程标准》要求: (1)在问题情境中了解数系的扩充过程,体会数系扩充过程的作用和必要性。 (2)理解复数的基本概念以及复数相等的充要条件。 (3)了解复数的代数表示法及其几何意义。 教材分析 复数的引入实现了中学阶段数系的最后一次扩充.但是,复数它完全没有按照教科书所描述的逻辑连续性.实际的需要使实数具有某种实在感.可是,复数的情形却不一样,是纯理论的创造. 新课程中复数内容突出复数的代数表示,同时也强调了复数的几何意义.它的内容是分层设计的:先将复数看成是有序实数对,再把复数看成

2、是直角坐标系下平面上的点或向量,最后介绍复数代数形式的加、减运算的几何意义.同时,复数作为一种新的数学语言,也为我们今后用代数的方法解决几何问题提供了新的工具和方法,体现了数形结合思想. 本节课的学习,一方面让学生回忆数系扩充的过程,体会虚数引入的必要性和合理性.另一方面,让学生理解复数的有关概念,掌握复数相等的充要条件,为今后的学习奠定基础.因此,本节课具有承前启后的作用,是本章的重点内容. 学情分析 在学习本节之前,学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。另一方面学生

3、对方程解的问题会默认为在实数集中进行,缺乏严谨的思维习惯。 基于以上分析,本节课的学习目标如下: (1)通过回忆数系的扩充过程,观察所列举的复数能简述复数的定义,并能说出复数的实部与虚部。 (2)通过小组讨论能将复数归类,并能用语言或图形表达复数的分类,会解决含有字母的复数的分类问题。 (3)通过比较给出的两个复数能归纳出复数相等的充要条件,并能解决与例题相似的题目。 重点、难点分析: 本节课是人教版《选修1-2》第三章第一课时,复数的概念为学生学习复数的表示、复数的运算及后继知识奠定了坚实的基础,因此,复数的概念是本节课学习的重点。 像x2=-1这样的方程没有实数解在学生心目中

4、已成定论,负数不能开平方是学生固有的思维模式,而虚数单位i的引入会引起学生认知上的冲突、心理上的排斥。故虚数单位i的引入是学生学习中的难点。 教法与学法分析 结合以上分析,本节课的教法主要采用问题驱动教学模式.通过设置问题串,让学生形成认知冲突;通过设置问题串,引领学生追溯历史,提炼数系扩充的原则;通过设置问题串,帮助学生合乎情理的建立新的认知结构,让数学理论自然诞生在学生的思想中。 教学设计流程 一、创设情境、新课引入: 回顾前几次数集的扩充过程。 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理

5、数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集。 因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数 ,叫做虚数单位.并由此产生的了复数 二、师生互动、新课讲解

6、 1.虚数单位 : (1)它的平方等于-1,即i2=-1  . (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. 2.i与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根。 3.复数的定义:形如a+bi(a、b∈R) 的数叫复数, a叫复数的实部, b叫复数的虚部, 全体复数所成的集合叫做复数集,用字母C表示。  4. 复数的代数形式: 复数通常用字母z表示,即把复数表示成a+bi的形式,叫做复数的代数形式。 5. 复数与实数、虚数、纯虚数及0的关系:对于复数 ,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数

7、z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0. 6.复数集与其它数集之间的关系:N Z Q R C. 7. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等。这就是说,如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d.   例1:(课本P51例1):实数m取什么数值时,复数z=m+1+(m-1)i是: (1)实数? (2)虚数? (3)纯虚数? [分析]因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值. 解:(1)当m-1=0,即m

8、1时,复数z是实数; (2)当m-1≠0,即m≠1时,复数z是虚数; (3)当m+1=0,且m-1≠0时,即m=-1时,复数z 是纯虚数. 例2:已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y. 解:根据复数相等的定义,得方程组,所以x=,y=4 三、课堂练习:(课本P52练习:1、2、3) 四、课堂小结,巩固反思: 这节课我们学习了虚数单位i及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件,复平面等等.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题。 说明

9、复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我采用讲解或体验已学过的数集的扩充的历史,让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识.从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类。 四、布置作业: 1.设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是( ) A.A∪B=C B. A=B C.A∩B= D.B∪B=C 2.复数(2x2+5x+2)+(x2+x-2)i为虚数,则实数x满足( ) A.x=- B.x=-2或- C.x≠-2 D.x≠1且x≠-2 3满足方程x2-2x-3+(9y2-6y+1)i=0的实数对(x,y)表示的点的个数是______.  

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服