ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:460.54KB ,
资源ID:10554144      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10554144.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中数学知识框架大总结重中之重.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学知识框架大总结重中之重.doc

1、高中数学知识框架总 一、《集合与函数》   内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。   复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。   指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。   函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;   正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。   两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;   求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。   幂函数性质易记,指数化既约分数;

2、函数性质看指数,奇母奇子奇函数,   奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 《数列》   等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。   数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,   取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:   一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:   首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。 《三角函数》   三角函数是函数,象限符号坐标注。

3、函数图象单位圆,周期奇偶增减现。   同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;   中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,   顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,   变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,   将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,   余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。   计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。   逆反原则作指导,升幂降次和差积。条件等式

4、的证明,方程思想指路明。   万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;   1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;   三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;   利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 《不等式》   解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。   高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。   证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。   直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。   还有重要不等式,以与数学归纳法。图形函数来帮助,画图建模构造法。 - 11 - / 11

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服