ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:557.50KB ,
资源ID:10552857      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10552857.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高等数学常用极限求法.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高等数学常用极限求法.doc

1、高等数学常用极限求法 求函数极限的方法和技巧 摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。 关键词:函数极限 引言 在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 主要内容 一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 证: 由 取 则当 时,就有 由函数极限定义有:

2、 2、利用极限的四则运算性质 若 (I) (II) (III)若 B≠0 则: (IV) (c为常数) 上述性质对于 例:求 解: = 3、约去零因式(此法适用于) 例: 求 解:原式= = == = 4、通分法(适用于型) 例: 求 解: 原式= = = 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足

3、 (I) (II) (M为正整数) 则: 例: 求 解: 由 而 故 原式 = 6、利用无穷小量与无穷大量的关系。 (I)若: 则 (II) 若: 且 f(x)≠0 则 例: 求下列极限 ① ② 解: 由 故 由 故 = 7、等价无穷小代换法 设 都是同一极限过程中的无穷小量,且有: , 存在, 则 也存在,且有= 例:求极限 解: = 注: 在利

4、用等价无穷小做代换时,一般只在以乘积形式出现时可以互换,若以和、差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数” 8、利用两个重要的极限。 但我们经常使用的是它们的变形: 例:求下列函数极限 9、利用函数的连续性(适用于求函数在连续点处的极限)。 例:求下列函数的极限 (2) 10、变量替换法(适用于分子、分母的根指数不相同的极限类型)特别地有: m、n、k、l 为正整数。 例:求下列函数极限 ① 、n ②

5、 解: ①令 t= 则当 时 ,于是 原式= ②由于= 令: 则 == = 11、 利用函数极限的存在性定理 定理: 设在的某空心邻域内恒有 g(x)≤f(x)≤h(x) 且有: 则极限 存在, 且有 例: 求 (a>1,n>0) 解: 当 x≥1 时,存在唯一的正整数k,使 k ≤x≤k+1 于是当 n>0 时有: 与

6、 又 当x时,k 有 与 =0 12、用左右极限与极限关系(适用于分段函数求分段点处的极限,以与用定义求极限等情形)。 定理:函数极限存在且等于A的充分必要条件是左极限与右极限都存在且都等于A。即有: ==A 例:设= 求与 由 13、罗比塔法则(适用于未定式极限) 定理:若 此定理是对型而言,对于函数极限的其它类型,均有类似的法则。 注:运用罗比塔法则求极限应注意以下几点: 1、 要注意条件,也就是说,在没有化为时不可求导。 2、 应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数。 3、

7、要与时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误。 4、当 不存在时,本法则失效,但并不是说极限不存在,此时求极限须用另外方法。 例: 求下列函数的极限 ① ② 解:①令f(x)= , g(x)= l , 由于 但 从而运用罗比塔法则两次后得到 ② 由 故此例属于型,由罗比塔法则有: 14、利用泰勒公式 对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为常用的展开式: 1、 2、 3、 4、 5、 6、 上述展开式中的符

8、号都有: 例:求 解:利用泰勒公式,当 有 于是 = = = 15、利用拉格朗日中值定理 定理:若函数f满足如下条件: (I) f 在闭区间上连续 (II)f 在(a ,b)内可导 则在(a ,b)内至少存在一点,使得 此式变形可为: 例: 求 解:令 对它应用中值定理得 即: 连续 从而有: 16、求代数函数的极限方法 (1)有理式的情况,即若: (I)当时,有 (II)当 时有: ①若 则 ②若 而 则 ③若,,则分别考虑若为的s重根,即:

9、 也为的r重根,即: 可得结论如下: 例:求下列函数的极限 ① ② 解: ①分子,分母的最高次方相同,故 = ② 必含有(x-1)之因子,即有1的重根 故有: (2)无理式的情况。虽然无理式情况不同于有理式,但求极限方法完全类同,这里就不再一一详述.在这里我主要举例说明有理化的方法求极限。 例:求 解: 二、多种方法的综合运用 上述介绍了求解极限的基本方法,然而,每一道题目并非只有一种方法。因此我们在解题中要注意各种方法的综合运用的技巧,使得计

10、算大为简化。 例:求 [解法一]: = 注:此法采用罗比塔法则配合使用两个重要极限法。 [解法二]: = 注:此解法利用“三角和差化积法”配合使用两个重要极限法。 [解法三]: 注:此解法利用了两个重要极限法配合使用无穷小代换法以与罗比塔法则 [解法四]: 注:此解法利用了无穷小代换法配合使用两个重要极限的方法。 [解法五]: 注:此解法利用“三角和差化积法”配合使用无穷小代换法。 [解法六]: 令 注:此解法利用变量代换法配合使用罗比塔法则。 [解法七]: 注:此解法利用了罗比塔法则配合使用两个重要极限。 (作者: 黄文羊) 18 / 18

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服