ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:305.01KB ,
资源ID:10503169      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10503169.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中物理-第一章-习题课-动量守恒定律的应用学案(含解析)粤教版选修3.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中物理-第一章-习题课-动量守恒定律的应用学案(含解析)粤教版选修3.doc

1、 学案5 习题课:动量守恒定律的应用 [学习目标定位] 1.进一步理解动量守恒定律的含义,理解动量守恒定律的系统性、相对性、矢量性和独立性.2.进一步熟练掌握应用动量守恒定律解决问题的方法和步骤. 一、把握守恒条件,合理选取系统 1.动量守恒定律成立的条件: (1)系统不受外力或所受外力的合力为零; (2)系统在某一方向上不受外力或所受外力的合力为0; (3)系统的内力远大于外力. 2.动量守恒定律的研究对象是系统.选择多个物体组成的系统时,必须合理选择系统,再对系统进行受力分析,分清内力与外力,然后判断所选系统是否符合动量守恒的条件. 例1 (双选)质量为M和m0的滑

2、块用轻弹簧连接,以恒定速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图1所示,碰撞时间极短,在此过程中,下列情况可能发生的是(  ) 图1 A.M、m0、m速度均发生变化,碰后分别为v1、v2、v3,且满足(M+m0)v=Mv1+mv2+m0v3 B.m0的速度不变,M和m的速度变为v1和v2,且满足Mv=Mv1+mv2 C.m0的速度不变,M和m的速度都变为v′,且满足Mv=(M+m)v′ D.M、m0、m速度均发生变化,M和m0的速度都变为v1,m的速度变为v2,且满足(M+m0)v=(M+m0)v1+mv2 解析 M和m碰撞时间极短,在极短的时间内弹

3、簧形变极小,可忽略不计,因而m0在水平方向上没有受到外力作用,动量不变(速度不变),可以认为碰撞过程中m0没有参与,只涉及M和m,由于水平面光滑,弹簧形变极小,所以M和m组成的系统水平方向动量守恒,两者碰撞后可能具有共同速度,也可能分开,所以只有B、C正确. 答案 BC 例2  图2 如图2所示,一辆砂车的总质量为M,静止于光滑的水平面上.一个质量为m的物体A以速度v落入砂车中,v与水平方向成θ角,求物体落入砂车后车的速度v′. 解析 物体和车作用时总动量不守恒,而水平面光滑,系统在水平方向上动量守恒,即mvcos θ=(M+m)v′,得v′=mvcos θ/(M+m) 答案

4、 mvcos θ/(M+m) 二、认真分析物理过程,合理选择初末状态 对于由多个物体组成的系统,由于物体较多,作用过程较为复杂,这时往往要根据作用过程中的不同阶段,将系统内的物体按作用的关系分成几个小系统,对不同阶段、不同的小系统准确选取初、末状态,分别列动量守恒定律方程求解. 例3 两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为mA=0.5 kg,mB=0.3 kg,它们的下底面光滑,上表面粗糙;另有一质量mC=0.1 kg 的滑块C(可视为质点),以vC=25 m/s的速度恰好水平地滑到A的上表面,如图3所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0

5、 m/s,求: 图3 (1)当C在A上表面滑动时,C和A组成的系统动量是否守恒?C、A、B三个物体组成的系统动量是否守恒? (2)当C在B上表面滑动时,C和B组成的系统动量是否守恒?C刚滑上B时的速度vC′是多大? 解析 (1)当C在A上表面滑动时,由于B对A有作用力,C和A组成的系统动量不守恒.对于C、A、B三个物体组成的系统,所受外力的合力为零,动量守恒. (2)当C在B上表面滑动时,C和B发生相互作用,系统不受外力作用,动量守恒.由动量守恒定律得: mCvC′+mBvA=(mB+mC)vBC① A、B、C三个物体组成的系统,动量始终守恒,从C滑上A的上表面到C滑离A,由

6、动量守恒定律得: mCvC=mCvC′+(mA+mB)vA② 由以上两式联立解得vC′=4.2 m/s,vA=2.6 m/s. 答案 (1)不守恒 守恒 (2)守恒 4.2 m/s 三、动量守恒定律应用中的临界问题分析 在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题.分析临界问题的关键是寻找临界状态,临界状态的出现是有条件的,这个条件就是临界条件.临界条件往往表现为某个(或某些)物理量的特定取值.在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,这些特定关系的判断是求解这类问题的关键. 例4 如图4所示

7、甲、乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车总质量共为M=30 kg,乙和他的冰车总质量也是30 kg.游戏时,甲推着一个质量为m=15 kg的箱子和他一起以v0=2 m/s 的速度滑行,乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处,乙迅速抓住.若不计冰面摩擦. 图4 (1)若甲将箱子以速度v推出,甲的速度变为多少?(用字母表示). (2)设乙抓住迎面滑来的速度为v的箱子后返向运动,乙抓住箱子后的速度变为多少?(用字母表示). (3)若甲、乙最后不相撞,甲、乙的速度应满足什么条件?箱子被推出的速度至少多大? 解析 (1)甲将箱子推出

8、的过程,甲和箱子组成的整体动量守恒,以箱子的速度方向为正方向,由动量守恒定律得:(M+m)v0=mv+Mv1① 解得v1=② (2)箱子和乙作用的过程,乙和箱子组成的整体动量守恒,以箱子的速度方向为正方向,由动量守恒定律得: mv-Mv0=(m+M)v2③ 解得v2=④ (3)甲、乙不相撞的条件是v1≤v2⑤ 其中v1=v2为甲、乙恰好不相撞的条件. 联立②④⑤三式,并代入数据得 v≥5.2 m/s. 答案 (1) (2) (3)v1≤v2  5.2 m/s 1.系统动量守 恒的条件 2.合理选取研究对象和研究过程 3.临界问题的分析 1.(双选)如图5所

9、示,在质量为M的小车上挂有一单摆,摆球的质量为m0,小车和摆球以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列可能发生的情况是(  ) 图5 A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3 B.摆球的速度不变,小车和木块的速度分别变为v1、v2,满足Mv=Mv1+mv2 C.摆球的速度不变,小车和木块的速度都变为v′,满足Mv=(M+m)v′ D.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv2 答案 BC

10、2. 图6 (双选)如图6所示,小车放在光滑的水平面上,将系着绳的小球拉开到一定的角度,然后同时放开小球和小车,那么在以后的过程中(  ) A.小球向左摆动时,小车也向左运动,且系统动量守恒 B.小球向左摆动时,小车向右运动,且系统动量守恒 C.小球向左摆到最高点,小球的速度为零而小车的速度不为零 D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反 答案 BD 解析 以小球和小车组成的系统为研究对象,在水平方向上不受力的作用,所以系统在水平方向上动量守恒.由于初始状态小车与小球均静止,所以小球与小车在水平方向上的动量要么都为零,要么大小相等、方向相反,所以A

11、C错,B、D对. 3.如图7所示,滑块A、C的质量均为m,滑块B的质量为m.开始时A、B分别以v1、v2的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速度地放在A上,并与A粘合不再分开,此时A与B相距较近,B与挡板相距足够远.若B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起.为使B能与挡板碰撞两次,v1、v2应满足什么关系? 图7 答案 1.5v2

12、得 2mv′-mv2=mv″③ 为使B能与挡板再次碰撞应满足v″>0④ 联立①②③④式得1.5v2

13、错误,D正确;同理分析,先放开左手后,系统的总动量向左,再放开右手后,系统的动量守恒,所以总动量仍向左,选项B错误,C正确.本题答案为C、D. 2.(双选)如图2所示,小车放在光滑水平面上,A、B两人站在车的两端,这两人同时开始相向行走,发现车向左运动,分析小车运动的原因可能是(  ) 图2 A.A、B质量相等,但A比B速率大 B.A、B质量相等,但A比B速率小 C.A、B速率相等,但A比B的质量大 D.A、B速率相等,但A比B的质量小 答案 AC 解析 两人及车组成的系统动量守恒,则mAvA-mBvB-mCvC=0,得mAvA-mBvB>0.所以A、C正确. 3.(单选

14、)(2014·重庆·4)一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度g=10 m/s2.则下列图中两块弹片飞行的轨迹可能正确的是(  ) 答案 B 解析 弹丸爆炸瞬间爆炸力远大于外力,故爆炸瞬间动量守恒.因两弹片均水平飞出,飞行时间t= =1 s,取向右为正方向,由水平速度v=知,选项A中,v甲=2.5 m/s,v乙=-0.5 m/s;选项B中,v甲=2.5 m/s,v乙=0.5 m/s;选项C中,v甲=1 m/s,v乙=2 m/s;选项D中,v甲=-1 m/s,v乙=2 m/s.因爆炸瞬

15、间动量守恒,故mv=m甲v甲+m乙v乙,其中m甲=m,m乙=m,v=2 m/s,代入数值计算知选项B正确. 4.(单选)如图3所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始下落,与半圆槽相切自A点进入槽内,则以下结论中正确的是(  ) 图3 A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒 B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒 C.小球离开C点以后,将做竖直上抛运动 D.槽将与墙不会再次接触 答案 D 解析 小球从A→

16、B的过程中,半圆槽对球的支持力沿半径方向指向圆心,而小球对半圆槽的压力方向相反指向左下方,因为有竖直墙壁挡住,所以半圆槽不会向左运动,可见,该过程中,小球与半圆槽在水平方向受到外力作用,动量并不守恒,而由小球、半圆槽和物块组成的系统动量也不守恒.从B→C的过程中,小球对半圆槽的压力方向指向右下方,所以半圆槽要向右推动物块一起运动,因而小球参与了两个运动:一个是沿半圆槽的圆周运动,另一个是与半圆槽一起向右运动,小球所受支持力方向与速度方向并不垂直,此过程中,因为有物块挡住,小球与半圆槽在水平方向动量并不守恒,在小球运动的全过程,水平方向动量也不守恒,选项A、B错误;当小球运动到C点时,它的两个分

17、运动的合速度方向并不是竖直向上,此后小球做斜上抛运动,即选项C错误;因为全过程中,整个系统在水平方向上获得了水平向右的冲量,最终槽将与墙不会再次接触,选项D正确. [方法技巧题组] 5.(单选)一弹簧枪可射出速度为10 m/s的铅弹,现对准以6 m/s 的速度沿光滑桌面迎面滑来的木块发射一颗铅弹,铅弹射入木块后未穿出,木块继续向前运动,速度变为5 m/s.如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块迎面射入的铅弹数为(  ) A.5颗 B.6颗 C.7颗 D.8颗 答案 D 解析 设木块质量为m1、铅弹质量为m2,取木块运动的方向为正方向,第一颗铅弹射入,

18、有m1v0-m2v=(m1+m2)v1,代入数据可得=15,设再射入n颗铅弹木块停止,有(m1+m2)v1-nm2v=0,解得n=8. 6.(2014·北京·22)如图4所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A和B分别静止在圆弧轨道的最高点和最低点.现将A无初速释放,A与B碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R=0.2 m;A和B的质量相等;A和B整体与桌面之间的动摩擦因数μ=0.2.取重力加速度g=10 m/s2.求: 图4 (1)碰撞前瞬间A的速率v; (2)碰撞后瞬间A和B整体的速率v′; (3)A和B整体在桌面上滑动的距离l.

19、 答案 (1)2 m/s (2)1 m/s (3)0.25 m 解析 设滑块的质量为m (1)根据机械能守恒定律mgR=mv2 得碰撞前瞬间A的速率v==2 m/s (2)根据动量守恒定律mv=2mv′ 得碰撞后瞬间A和B整体的速率 v′=v=1 m/s (3)根据动能定理(2m)v′2=μ(2m)gl 得A和B整体沿水平桌面滑动的距离l==0.25 m 7. 图5 如图5所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹射中并且子弹嵌在其中.已知物体A的质量mA是物体B的质量mB的3/4,子弹的质量m是物体B的质量的1/4,求弹簧压

20、缩到最短时B的速度. 答案  解析 弹簧压缩到最短时,子弹、A、B具有共同的速度v1,且子弹、A、B组成的系统,从子弹开始射入物体A一直到弹簧被压缩到最短的过程中,系统所受外力(重力、支持力)之和始终为零,故整个过程系统的动量守恒,由动量守恒定律得 mv0=(m+mA+mB)v1,又m=mB,mA=mB,故v1==,即弹簧压缩到最短时B的速度为. 8.以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块.其中质量大的一块沿着原来的方向以2v0的速度飞行.求: (1)质量较小的另一块弹片速度的大小和方向; (2)爆炸过程有多少化学能转化为弹片的

21、动能. 答案 (1)2.5v0 与爆炸前速度方向相反 (2)mv 解析 手榴弹爆炸过程中,爆炸产生的作用力是内力,远大于重力,因此爆炸过程中各弹片组成的系统动量守恒.因为爆炸过程火药的化学能转化为内能,进而有一部分转化为弹片的动能,所以此过程系统的机械能(动能)增加. (1) 斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v1=v0cos 60°=v0.设v1的方向为正方向,如图所示,由动量守恒定律得3mv1=2mv1′+mv2. 其中爆炸后大块弹片的速度v1′=2v0,小块弹片的速度v2为待求量,解得v2=-2.5v0,“-”号表示v2的速度方向与爆炸前速度方向

22、相反. (2)爆炸过程中转化为动能的化学能等于系统动能的增量,即ΔEk=×2mv1′2+mv-(3m)v=mv. 9. 图6 如图6所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为M,绳长为L,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小. 答案 (m+M)g+ 解析 物理过程共有两个阶段:射入阶段和圆周运动阶段.射入阶段可认为木块还未摆动,绳子没有倾斜,子弹和木块组成的系统水平方向不受外力作用,动量守恒.子弹停留在木块中后以一定的速度做变速圆周运动,绳子倾斜,水平方向有了分力,动量不再守恒. 在子弹射入木块的瞬间,子弹和木块组成的系统动量

23、守恒.取向左为正方向,由动量守恒定律得0+mv=(m+M)v1 解得v1=. 随后子弹和木块整体以此初速度向左摆动做圆周运动.在圆周运动的最低点,整体只受重力(m+M)g和绳子的拉力F作用,由牛顿第二定律得(取向上为正方向) F-(m+M)g=(m+M) 将v1代入解得 F=(m+M)g+(m+M)=(m+M)g+ [创新应用题组] 10.如图7所示,甲车质量m1=20 kg,车上有质量M=50 kg的人,甲车(连同车上的人)以v=3 m/s的速度向右滑行,此时质量m2=50 kg的乙车正以v0=1.8 m/s的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上,求人跳出甲车的水平速度(相对地面)应当在什么范围以内才能避免两车相撞?不计地面和小车的摩擦,且乙车足够长. 图7 答案 大于等于3.8 m/s 解析 人跳到乙车上后,如果两车同向,甲车的速度小于或等于乙车的速度就可以避免两车相撞. 以人、甲车、乙车组成的系统为研究对象,由水平方向动量守恒得: (m1+M)v-m2v0=(m1+m2+M)v′,解得v′=1 m/s. 以人与甲车为一系统,人跳离甲车过程水平方向动量守恒,得:(m1+M)v=m1v1′+Mu 解得u=3.8 m/s. 因此,只要人跳离甲车的速度u≥3.8 m/s,就可避免两车相撞.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服