ImageVerifierCode 换一换
格式:PPTX , 页数:25 ,大小:671.94KB ,
资源ID:1047329      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1047329.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高考数学中利用空间向量解决立体几何向量方法四——在立体几何证明中应用.pptx)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考数学中利用空间向量解决立体几何向量方法四——在立体几何证明中应用.pptx

1、 前段时间我们研究了用空间向量求前段时间我们研究了用空间向量求角角(包括线线角、线面角和面面角包括线线角、线面角和面面角)、求、求距离距离(包括线线距离、点面距离、线面包括线线距离、点面距离、线面距离和面面距离距离和面面距离)今天我来研究如何利用空间向量来今天我来研究如何利用空间向量来解决立体几何中的有关证明问题。解决立体几何中的有关证明问题。立体几何中的有关证明问题,大致可分为立体几何中的有关证明问题,大致可分为“平行平行”“垂直垂直”两大类:两大类:平行:平行:线面平行、面面平行线面平行、面面平行垂直:垂直:线线垂直、线面垂直和面面垂直线线垂直、线面垂直和面面垂直平行与垂直的问题的证明,除

2、了要熟悉相平行与垂直的问题的证明,除了要熟悉相关的定理之外,下面几个性质必须掌握。关的定理之外,下面几个性质必须掌握。1、已知、已知b,a不在不在内,如果内,如果ab,则,则a。2、如果、如果a,a,则,则。3、如果、如果ab,a,则,则b。(课本。(课本P22.6)4、如果、如果a,b,ab,则,则。一、一、用空间向量处理用空间向量处理“平行平行”问问题题 一、一、用空间向量处理用空间向量处理“平行平行”问问题题 GAEDCBFHMN例例1.如图:如图:ABCD与与ABEF是正方形,是正方形,CB平面平面ABEF,H、G分别是分别是AC、BF上的点,且上的点,且AH=GF.求证:求证:HG平

3、面平面CBE.MHAB,NG AB MHNGAH=FG CH=BG CH:CA=BG:BF MH=NGGAEDCBFHPPHCB,PGBE 平面平面HPG平面平面CBE HG平面平面CBE GAEDCBFHozy证明:由已知得:证明:由已知得:AB、BC、BE两两垂直,故可两两垂直,故可建立如图所示的空间直建立如图所示的空间直角坐标系角坐标系o-xyz.x设正方形边长为设正方形边长为1,AH=FG=a,则则H(0,1-a,a)、G(1-a,1-a,0),故故 ,而平面而平面CBE的法向的法向量为量为 (0,1,0),故故 ,而而 平面平面CBE 故故 HG平面平面CBE RDBCAA1QPNM

4、D1C1B1例例2.在正方体在正方体ABCD-A1B1C1D1中,中,P、Q分别是分别是A1B1和和BC上的动点,且上的动点,且A1P=BQ,M是是AB1的中点,的中点,N是是PQ的的中点中点.求证:求证:MN平面平面AC.M是中点,是中点,N是中点是中点 MNRQ MN平面平面ACDBCAA1QPNMD1C1B1作作PP1AB于于P1,作作MM1 AB于于M1,连结连结QP1,作作NN1 QP1于于N1,连结连结M1N1N1M1P1NN1PP1 MM1AA1又又NN1、MM1均等于边长的一半均等于边长的一半故故MM1N1N是平行四边形,故是平行四边形,故MNM1N1MN平面平面ACDBCAA

5、1QPNMD1C1B1zyxo证明:建立如图证明:建立如图所示的空间直角所示的空间直角坐标系坐标系o-xyz设正方形边长为设正方形边长为2,又,又A1P=BQ=2x则则P(2,2x,2)、Q(2-2x,2,0)故故N(2-x,1+x,1),而而M(2,1,1)所以向量所以向量 (-x,x,0),又平面,又平面AC的法的法向量为向量为 (0,0,1),又又M不在平面不在平面AC 内,所以内,所以MN平面平面ACDCBAD1C1B1A1例例3.在正方体在正方体ABCD-A1B1C1D1中,求证:中,求证:平面平面A1BD平面平面CB1D1平行四边形平行四边形A1BCD1 A1BD1C平行四边形平行

6、四边形DBB1D1 B1D1BD于是平面于是平面A1BD平面平面CB1D1DCBAD1C1B1A1ozyx证明:建立如图所示的证明:建立如图所示的空间直角坐标系空间直角坐标系o-xyz设正方形边长为设正方形边长为1,则向量则向量设平面设平面BDA1的法向量的法向量为为则有则有x+z=0 x+y=0令令x=1,则得方程组的解为则得方程组的解为x=1 y=-1 z=-1故平面故平面BDA1的法向量为的法向量为同理可得平面同理可得平面CB1D1的法向量为的法向量为则显然有则显然有即得两平面即得两平面BDA1和和CB1D1的法向量平行的法向量平行所以所以 平面平面BDA1CB1D1 通过本例的练习,同

7、学们要进一步通过本例的练习,同学们要进一步掌握平面法向量的求法:即用平面内掌握平面法向量的求法:即用平面内的两个相交向量与假设的法向量求数的两个相交向量与假设的法向量求数量积等于量积等于0,利用解方程组的方法求出,利用解方程组的方法求出平面法向量平面法向量(在解的过程中可令其中一在解的过程中可令其中一个未知数为某个数个未知数为某个数)。例例1 1、2 2与例与例3 3在利用法向量时有何不同?在利用法向量时有何不同?DCBAD1C1B1A1FGHE例例4.在正方体在正方体ABCD-A1B1C1D1中,中,E、F、G、H分别是分别是A1B1、B1C1、C1D1、D1A1的的中点中点.求证:求证:平

8、面平面AEH平面平面BDGFADGF,AD=GF又又EHB1D1,GFB1D1 EHGF平行四边形平行四边形ADGE AEDG 故得平面故得平面AEH平面平面BDGFDCBAD1C1B1A1HGFEozyx略证:建立如图所示的略证:建立如图所示的空间直角坐标系空间直角坐标系o-xyz则求得平面则求得平面AEF的法向的法向量为量为求得平面求得平面BDGH的法向的法向量为量为显然有显然有故故 平面平面AEH平面平面BDGF 二、二、用空间向量处理用空间向量处理“垂直垂直”问问题题 二、二、用空间向量处理用空间向量处理“垂直垂直”问问题题 FEXYZ证明证明:分别以分别以 为坐标向量建立空间直角坐标

9、系为坐标向量建立空间直角坐标系 ADCB求证:平面求证:平面MNC平面平面PBC;求点求点A到平面到平面MNC的距离。的距离。已知已知ABCD是矩形,是矩形,PD平面平面ABCD,PDDCa,AD ,M、N分别是分别是AD、PB的中点。的中点。PMN练习练习1小结:小结:利用向量的有关知识解决一些立体几何的问题,是利用向量的有关知识解决一些立体几何的问题,是近年来很近年来很“热热”的话题,其原因是它把有关的的话题,其原因是它把有关的“证明证明”转化为转化为“程序化的计算程序化的计算”。本课时讲的内容是立体几。本课时讲的内容是立体几何中的证明何中的证明“线面平行、垂直线面平行、垂直”的一些例子,

10、结合我们的一些例子,结合我们以前讲述立体几何的其他问题以前讲述立体几何的其他问题(如:求角、求距离等如:求角、求距离等),大家从中可以进一步看出基中一些解题的大家从中可以进一步看出基中一些解题的“套路套路”。利用向量解题利用向量解题 的关键是建立适当的空间直角坐标系的关键是建立适当的空间直角坐标系及写出有关点的坐标。及写出有关点的坐标。用代数的方法解决立体几何问题是立体几何的发展用代数的方法解决立体几何问题是立体几何的发展趋势,而向量是用代数的方法解决立体几何问题的主趋势,而向量是用代数的方法解决立体几何问题的主要工具,故学会用向量法解立体几何问题是学好立体要工具,故学会用向量法解立体几何问题是学好立体几何的基础。几何的基础。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服