1、一、动量定理的应用 1.简解多过程问题。 1、一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经 过t3=6s停下来。试求物体在水平面上所受的摩擦力。 2.求解平均力问题 2 、质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为1.2s,安全带伸直后长5m,求安全带所受的平均冲量.( g= 10m/s2) 3、求解曲线运动问题 V0 300 图2 3、 如图
2、 2所示,以Vo =10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球.忽略空气阻力的作用,g取10m/s2.求抛出后第2s末小球速度的大小. 4、求解流体问题 4 、某种气体分子束由质量m=5.4X10-26kg速度V=460m/s的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,若分子束中每立方米的体积内有n0=1.5X1020个分子,求被分子束撞击的平面所受到的压强. 5. 有一宇宙飞船以在太空中飞行,突然进入一密度为的微陨石尘区,假设微陨石与飞船碰撞后即附着在飞船上。欲使飞船保持原速度不变,试求飞船的助推
3、器的助推力应增大为多少。(已知飞船的正横截面积)。 (拓展)5、对系统应用动量定理。 系统的动量定理就是系统所受合外力的冲量等于系统总动量的变化。若将系统受到的每一个外力、系统内每一个物体的速度均沿正交坐标系x轴和y轴分解,则系统的动量定理的数学表达式如下: , 对于不需求解系统内部各物体间相互作用力的问题,采用系统的动量定理求解将会使求解简单、过程明确。 m V0 V/ 图3 M 6、如图3所示, 质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为V0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面
4、的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大? B A V 图4 7、如图4所示,矩形盒B的质量为M,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面间的动摩擦因数分别μ1、μ2,开始时二者均静止。现瞬间使物体A获取一向右且与矩形盒B左、右侧壁垂直的水平速度V0,以后物体A在盒B的左右壁碰撞时,B始终向右运动。当A与B最后一次碰撞后,B停止运动,A则继续向右滑行距离S后也停止运动,求盒B运动的时间t。 8. 质量为M的金属块和质量为m的木块用细绳连在一起,放在水中,如图所示。从静止开始以加速度a在水中匀加速下沉。经时间,细线突然断裂,金属
5、块和木块分离,再经时间,木块停止下沉,试求此时金属块的速度。 二、动量守恒、能量初步 1、如图, 一质量为M的物块静止在桌面边缘, 桌面离水平面的高度为h. 一质量为m的子弹以水平速度v0射入物块后, 以水平速度v0/2射出. 重力加速度为g. 求 (1)此过程中系统损失的机械能; (2)此后物块落地点离桌面边缘的水平距离. 2、如图所示,在一光滑的水平面上有两块相同的木板B和C.重物A(视为质点)位于B的右端,A、B、C的质量相等.现A和B以同一速度滑向静止的C,B与C发生正碰.碰后B和C粘在一起运动,A在C上滑行,A与C有摩擦力.已知A滑到C的右端而未掉下.
6、试问:B、C发生正碰到A刚移动到C右端期间,C所走过的距离是C板长度的多少倍? 3、两物块A、B用轻弹簧相连,质量均为2 kg,初始时弹簧处于原长,A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,质量4 kg的物块C静止在前方,如图所示。B与C碰撞后二者会粘在一起运动。求在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 4、如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B
7、开始向右运动,最后A不会滑离B,求: (1)A、B最后的速度大小和方向. (2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小. 5、一质量M=0.8kg的小物块,用长l=0.8m的细绳悬挂在天花板上,处于静止状态。一质量m=0.2kg的粘性小球以速度v0=10m/s水平射向物块,并与物块粘在一起,小球与物块相互作用时间极短可以忽略,不计空气阻力,重力加速度g取10m/s2。求: (1)小球粘在物块上的瞬间,小球和物块共同速度的大小; (2)小球和物块摆动过程中,细绳拉力的最大值; (3)小球和物块摆动过程中所能达到的最大高度。
8、 6、如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上。现有一滑块A从光滑曲面上离桌面h高处由静止开始下滑下,与滑块B发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出。已知求: (1)滑块A与滑块B碰撞结束瞬间的速度; (2)被压缩弹簧的最大弹性势能; (3)滑块C落地点与桌面边缘的水平距离。 7、光滑水平面上有两个小木块A和B,其质量mA=1kg、mB=4kg,它们中间用一根轻质弹簧相连.一颗
9、水平飞行的子弹质量为m=50g,以V0=500m/s的速度在极短时间内射穿两木块,已知射穿A木块后子弹的速度变为原来的,且子弹射穿A木块损失的动能是射穿B木块损失的动能的2倍.求:系统运动过程中弹簧的最大弹性势能. A B v0 8、光滑水平面上放着质量mA=1 kg的物块A与质量mB=2 kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能EP=49 J.在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直
10、半圆光滑轨道,其半径R=0.5 m,B恰能到达最高点C.取g=10 m/s2,求 (1)绳拉断后瞬间B的速度vB的大小; (2)绳拉断过程绳对B的冲量I的大小; (3)绳拉断过程绳对A所做的功W. 9.某地强风的风速是20m/s,空气的密度是=1.3kg/m3。一风力发电机的有效受风面积为S=20m2,如果风通过风力发电机后风速减为12m/s,且该风力发电机的效率为=80%,则该风力发电机的电功率多大? 10、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=5
11、0kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时: (1)两车的速度各为多少?(2)甲总共抛出了多少个小球? C A B 图11 V0 2V0 11.如图11所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ。最初木板静止,A、B两木块同时以方向水平向右的初速度V0和2V0在木板上滑动,木板足够长, A、B始终未滑离木板。求: (1)木块B从
12、刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移; (2)木块A在整个过程中的最小速度。 12.面积很大的水池,水深为H,水面上浮着一正方体木块,木块边长为,密度为水的,质量为,开始时,木块静止,有一半没入水中,如图38所示,现用力F将木块缓慢地压到池底,不计摩擦,求 (1)从开始到木块刚好完全没入水的过程中,力F所做的功。 (2)若将该木块放在底面为正方形(边长为a)的盛水足够深的长方体容器中,开始时,木块静止,有一半没入水中,如图39所示,现用力F将木块缓慢地压到容器底部,不计摩擦。求从开始到木块刚好完全没入水的过程中,容器中水势能的改变量。 图39 图3
13、8 H a 拓展:会用动量守恒定律和能量守恒解“相对滑动类”问题 解决动力学问题,一般有三种途径:(1)牛顿第二定律和运动学公式(力的观点);(2)动量定理和动量守恒定律(动量观点);(3)动能定理、机械能守恒定律、功能关系、能的转化和守恒定律(能量观点).以上这三种观点俗称求解力学问题的三把“金钥匙”.如何合理选取三把“金钥匙”解决动力学问题,是老师很难教会的。但可以通过分别用三把“金钥匙”对一道题进行求解,通过比较就会知道如何选取三把“金钥匙” 解决动力学问题,从而提高分析问题解决问题的能力。 图13 V0 V0 B A 13、如图13所示,一质量为M、长为L的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M.现以地面为参照系,给A和B以大小相等、方向相反的初速度(如图1),使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板,以地面为参照系. (1)若已知A和B的初速度大小为V0,求它们最后的速度大小和方向. (2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离.
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818