ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:85.51KB ,
资源ID:10351119      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10351119.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中数学基本不等式及其应用教案.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学基本不等式及其应用教案.doc

1、基本不等式及其应用教案   教学目的   (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式.   (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力.   教学过程   一、引入新课     师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么?   生:求差比较法,即   师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法.   如果a、b∈

2、R,那么(a-b)2属于什么数集?为什么?   生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈   R+∪{0}.   师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法.   二、推导公式     1.奠基   师:如果a、b∈R,那么有 (a-b)2≥0. ①   把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ②   ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a

3、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢?      师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号).   以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索.   2.探索   师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方

4、和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab; b2+c2≥2bc; c2+a2≥2ca.   把以上三式叠加,得 a2+b2+c2≥ab+bc+ca ③   (当且仅当a=b=c时取“=”号).   以此类推:如果ai∈R,i=1,2,…,n,那么有 ④   (当且仅当a1=a2=…=an时取“=”号).   ④式是②式的一种推广式,②式就是④式中n=2时的特殊情况.③和④式不必当作公式去记,但从它们的推导过程中可以学到一种处理两项以上的和式问题的数学思想与方法——迭代与叠加.   3.再探索   

5、师:考察两个以上实数的更高次幂的和,又能得到什么有趣的结果呢?先考查两个实数的立方和.由于 a3+b3=(a+b)(a2-ab+b2),   启示我们把②式变成 a2-ab+b2≥ab,   两边同乘以a+b,为了得到同向不等式,这里要求a、b∈R+,得到 a3+b3≥a2b+ab2. ⑤   考查三个正实数的立方和又具有什么性质呢?   生:由③式的推导方法,再增加一个正实数c,对b、c,c、a迭代⑤式,得到 b3+c3≥b2c+bc2, c3+a3≥c2a+ca2.   三式叠加,并应用公式②,得 2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2

6、+b2) ≥a·2bc+b·2ca+c·2ab=6abc. ∴a3+b3+c3≥3abc ⑥   (当且仅当a=b=c时取“=”号).   师:这是课本中的不等式定理2,即三个正实数的立方和不小于它们的积的3倍.同学们可能想到n个正实数的立方和会有什么结果,进一步还会想到4个正数的4次方的和会有什么结果,直至n个正数的n次方的和会有什么结果.这些问题留给同学们课外去研究.   4.推论   师:直接应用公式②和⑥可以得到两个重要的不等式.       ⑦   (当且仅当a=b时取“=”号).   这就是课本中定理1的推论.       ⑧   (

7、当且仅当a=b=c时取“=”号).这就是课本中定理2的推论.   当ai∈R+(i=1,2,…,n)时,有下面的推广公式(在中学不讲它的证明) ⑨   (当且仅当a1=a2=…=an时取“=”号).      何平均数.⑨式表明:n个正数的算术平均数不小于它们的几何平均数.这是一个著名的平均数不等式定理.现在只要求同学掌握n=2、3时的两个公式,即⑦和⑧.   三、小结     (1)我们从公式①出发,运用综合法,得到许多不等式公式,其中要求同学熟练掌握的是公式②、⑥、⑦、⑧.它们之间的关系可图示如下:   (2)上述公式的证法不止综合法一种.比如公式②和⑥,在课本

8、上是用比较法证明的.又如公式⑦也可以由①推出;用⑦还可以推出⑧;由⑦、⑧也可以推出②、⑥.但是不论哪种推导系统,其理论基础都是实数的平方是非负数.   四个公式中,②、⑦是基础,最重要.它们还可以用几何法或三角法证明.   几何法:构造直角三角形ABC,使∠C=90°,BC=a,AC=b(a、b∈R+),则a2+b2=c2表示以斜边c为边的正方形的面积.而   如上左图所示,显然有   (当且仅当a=b时取“=”号,这时Rt△ABC等腰,如上右图).这个图是我国古代数学家赵爽证明勾股定理时所用过的“勾股方圆图”,同学们在初中已经见过.   三角法:在Rt△ABC中,令∠C

9、90°, AB=c, BC=a,AC=b,则   2ab=2·c sin A· c sin B=2c2sinAcos A=c2·sin2A≤c2   =a2+b2 (∵sin2A≤1)   (当且仅当sin2A=1,A=45°,即 a=b时取“=”号).      三、应用公式练习     1.判断正误:下列问题的解法对吗?为什么?如果不对请予以改正.         a、b∈R+.若tgα、ctgα∈R+.解法就对了.这时需令α是第一、三象限的角.]         改条件使a、b∈R+;②改变证法.a2+ab+b2≥2ab+ab=3ab.]   师:解题

10、时,要根据题目的条件选用公式,特别注意公式中字母应满足的条件.只有公式①、②对任何实数都成立,公式⑥、⑦、⑧都要求字母是正实数(事实上对非负实数也成立).   2.填空:   (1)当a________时,an+a-n≥________;      (3)当x________时,lg2x+1≥_________;      (5)tg2α+ctg2α≥________;   (6)sinxcosx≤________;         师:从上述解题中,我们可以看到:(1)对公式中的字母应作广义的理解,可以代表数,也可以代表式子.公式可以顺用,也可以逆用.总之要灵活运用公式.(2)上述题目中右边是常数的,说明左边的式子有最大或最小值.因此,在一定条件下应用重要不等式也可以求一些函数的最大(小)值.(3)重要不等式还可以用于数值估计.如   表明任何自然数的算术平方根不大于该数加1之半.  

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服