ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:339.50KB ,
资源ID:10349781      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10349781.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(新北师版九年级数学下册第二章二次函数测试题.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新北师版九年级数学下册第二章二次函数测试题.doc

1、新宝中学九年级数学(下)第二章 二次函数(一) 班别: 姓名: 1、二次函数y=x2+4x﹣5的图象的对称轴为(  ) A. x=4 B. x=﹣4 C. x=2 D. x=﹣2 2、已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是(  ) A. m=﹣1 B. m=3 C. m≤﹣1 D. m≥﹣1 3、将抛物线y=x2向右平移2个单位,再向上平移3个单位后,新的抛物线为(   )    A.y=(x+2)2+3  B. 

2、y=(x-2)2+3   C. y=(x+2)2﹣3  D. y=(x-2)-3 4、在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是(  ) A. B. C. D. 5、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是(  ) A B C D 6、在下列二次函数中,其图象对称轴为x=﹣2的是(  ) A. y=(x+2)2 B. y=2x2﹣2 C. y=﹣2x2﹣2 D. y=2(x﹣2)2 7、二次函数y

3、x+2)2﹣1的图象大致为(  )   A B C D 8、若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为(  ) A. m>1 B. m>0 C. m>﹣1 D. ﹣1<m<0 9、二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是(  ) A .函数图象与y轴的交点坐标是(0,﹣3) B.顶点坐标是(1,﹣3) C .函数图象与x轴的交点坐标是(3,0)、(﹣1,0) D. 当x<0时,y随x的增大而减小 10、如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:

4、①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0 其中正确的个数为(  ) A. 1 B. 2 C. 3 D. 4 11、已知二次函数y=﹣x2+2x+m. (1)如果二次函数的图象与x轴有两个交点,求m的取值范围; (2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标. 12、已知抛物线y=ax2+bx+3的对称轴是直线x=1. (1)求证:2a+b=0; (2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.

5、 13、已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3). (1)求抛物线的函数表达式; (2)求直线BC的函数表达式和∠ABC的度数; (3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标. 14、如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧). (1)求抛物线的解析式; (2)求点O到直线AB的距离; (3)点M在第二象限内的抛物线

6、上,点N在x轴上,且∠MND= ∠OAB,当△DMN与△OAB相似时,求点M的坐标. 15、如图,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5. (1)求b,c的值; (2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形; (3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由. 新宝中学九年级数学(下)第二章 二次函数(二) 班别:

7、 姓名: 1、如图是二次函数y=ax2+bx+c的图象,下列结论: ①ax2+bx+c的最大值为4;②4a+2b+c<0; ③一元二次方程ax2+bx+c=1的两根之和为﹣1; ④使y≤3成立的x的取值范围是x≥0. 其中正确的个数有(  ) A. 1个 B. 2个 C. 3个 D. 4个 2、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①b2>4ac;②2a+b=0;③a+b+c>0; ④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点, 则y1<y2,其中正

8、确结论是(  ) A. ②④ B. ①④ C. ①③ D. ②③ 3、抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为(  )   A. B. C. D. 4、如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和 (4,0)两点,当函数值y>0时,自变量x的取值范围是(  )   A. x<﹣2 B. ﹣2<x<4 C. x>0 D. x>4 5、如图是二次函数y=ax2+bx+c=(a≠0)图象的一部分,对

9、称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有(  )   A.①③④ B.②④⑤ C .①②⑤ D.②③⑤ 6、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是(  )   A. B. C. D.

10、 7、二次函数y=ax2+bx+c的图象如图所示,则错误的是(  ) A. a<0 B. b>0 C. b2﹣4ac>0 D. a+b+c<0 8、二次函数y=x2﹣4x﹣3的顶点坐标是(   ,   ). 9、抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是  . 10、如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是 抛物线y=﹣x2+2x+5的一个动点,其横坐标为a,过点P且平 行于y轴的直线交直线y=﹣x+3于点Q,则当PQ=BQ时, a的值是      . 11、某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已

11、知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元. (1)根据题意,填写如表: 蔬菜的批发量(千克) … 25 60 75 90 … 所付的金额(元) … 125     300     … (2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式; (3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜

12、的当日利润最大?最大利润为多少元? 12、如图,已知二次函数y= -x2+bx+3的图象与x轴的一个交点为A(4,0), (1)求此二次函数关系式和点B的坐标; (2)在x轴的正半轴上是否存在点P,使得△PAB是以AB为 底的等腰三角形?若存在,求出点P的坐标;若不存在,请 说明理由. 13、如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E. (1)当F为AB的中点时,求该函数的解析式

13、 (2)当k为何值时,△EFA的面积最大,最大面积是多少? 新宝中学九年级数学(下)第二章 二次函数(三) 班别: 姓名: 1、一个批发商销售成本为20元/千克的某产品,根据规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系, 售价x(元/千克) … 50 60 70 80 … 销售量y(千克) … 100 90 80 70 … (1)求y与x的函数关系式;(2)若想获得4000元的利润,应将售价定为多少元? (3

14、该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元? 2、如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3). (1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标; (3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值. 3、①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有   个.

15、 4、小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元. (1)分别求甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式 (2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?

16、 5、如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点. (1)求抛物线的解析式; (2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值? (3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

17、6、已知二次函数y=(x﹣2)2+3,当x   时,y随x的增大而减小. 7、某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为多少元时,该服装店平均每天的销售利润最大. 8、已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线. (1)求m、n的值; (2)如图, PA:PB=1:5,求一次函数的表达式. 新宝中学九年级数学(下)第二章 二次函数(

18、四) 班别: 姓名: 1、已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为    2、某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长), 中间用一道墙隔开,并在如图所示的三处各留1m宽的门. 已知计划中的材料可

19、建墙体(不包括门)总长为27m,则 能建成的饲养室面积最大为   m2. 3、某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示. (1)求y关于x的函数关系式(不要求写出x的取值范围); (2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少? 4、如图,抛物线经过A(),B(),C()三点. (1)求抛物线的解析式; (2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标; (3)设点M是抛物线的

20、顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由. 5、已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D. (1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形; (3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由. 6、二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.

21、 (1)求该抛物线的解析式; (2)判断△BCM的形状,并说明理由; (3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由. 7、如图,正方形OABC的边长为4,抛物线y=﹣x2+bx+c的顶点为点D (1)求此抛物线的解析式. (2)求此抛物线顶点D的坐标和四边形ABCD的面积. 8、已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2, (1)求抛物线的解析式. (2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由. (3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标. 16

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服